瓶颈变压器-火炬
在Pytorch中,在性能-计算权衡方面优于EfficientNet和DeiT的卷积(SotA)视觉识别模型的卷积+注意实现
安装
$ pip install bottleneck-transformer-pytorch
用法
import torch
from torch import nn
from bottleneck_transformer_pytorch import BottleStack
layer = BottleStack (
dim = 256 , # channels in
fmap_size = 64 , # feature map size
dim_out = 2048 , # channels out
proj_factor = 4 , #
1