近年来,深度传感器和三维激光扫描仪的普及推动了三维点云处理方法的快速发展。点云语义分割作为理解三维场景的关键步骤,受到了研究者的广泛关注。随着深度学习的迅速发展并广泛应用到三维语义分割领域,点云语义分割效果得到了显著提升。
2021-06-23 15:12:59 2.83MB 云语义分割
1
基于深度学习的LSTM情感分析课程简介 NLP领域的热门应用,常用在舆情分析,文章分类,智能客服,情感分析等多个场景。情感分析作为自然语言处理的基础技术之一,常被用于电商评论、舆情监控、微博评论情感分析、话题监督等领域,因此深入学习情感分析技术,是作为自然语言处理从业者必备技能,本课程以案例驱动出发,结合多个项目实战案例,覆盖多种算法,如RNN,LSTM等
2021-06-22 18:06:00 606B 人工智能 深度学习 lstm 情感分析
1
数据融合是最大程度发挥大数据价值的关键,深度学习是挖掘数据深层特征信息的技术利器,基于深度学习的数据融合能够充分挖掘大数据潜在价值,从新的深度和广度拓展对世界的探索和认识。
2021-06-20 10:46:21 882KB 数据融合方法
1
傅里叶叠层显微成像(FPM)是一种能够重建宽视场和高分辨率图像的新型成像技术。传统的FPM重建算法计算成本高,重建高质量的图像需要较大的图像采集量,这些缺点使得传统重建算法的成像性能和效率较低。因此,提出一种基于深度学习的傅里叶叠层显微成像的神经网络模型,对图像进行低分辨率到高分辨率的端到端映射,有效提高成像性能和效率。首先,借助菱形采样方法进行图像采集,加速低分辨图片采集过程。其次,结合残差结构、密集连接以及通道注意力机制等模块,拓展网络深度、挖掘有用特征,增强网络模型的表达能力和泛化能力。然后,使用子像素卷积进行高效地上采样,恢复高清图像。最后,采用主观和客观的评价方法对重建结果进行评估。结果显示,本文提出的网络模型对比传统重建算法重构效果更优,且降低了计算复杂度,平均重建时间更短。同时,在保证图像重建效果不变的情况下,低分辨率图像的采集数量比传统算法减少了约一半。
2021-06-19 00:44:14 15.63MB 成像系统 计算成像 深度学习 傅里叶叠
1
基于深度学习的目标跟踪技术的研究综述_罗元.pdf
2021-06-18 18:01:41 2.02MB 论文
1
如今网络爬虫盛行,越来越多的网站为了防止恶意爬取,设置了验证码,这里教大家如何用深度学习识别图片验证码
2021-06-16 23:37:26 5KB 深度学习 卷积神经网络 OCR
1
目标检测(Object Detection)是计算机视觉领域的基本任务之一,学术界已有将近二十年的研究历史。近些年随着深度学习技术的火热发展,目标检测算法也从基于手工特征的传统算法转向了基于深度神经网络的检测技术。从最初 2013 年提出的 R-CNN、OverFeat,到后面的 Fast/Faster R-CNN、SSD、YOLO 系列,再到 2018 年最近的 Pelee。短短不到五年时间,基于深度学习的目标检测技术,在网络结构上,从 two stage 到 one stage,从 bottom-up only 到 Top-Down,从 single scale network 到 feature pyramid network,从面向 PC 端到面向手机端,都涌现出许多好的算法技术,这些算法在开放目标检测数据集上的检测效果和性能都很出色。
2021-06-15 21:14:30 3.8MB 深度学习 目标检测
1
基于深度学习的故障诊断模型代码和数据
2021-06-13 14:06:22 99KB 深度学习 代码
1
泰迪杯数据挖掘比赛一等奖论文,离特等奖就差一点,有点可惜
提出了一种基于深度学习的红外与可见光决策级融合跟踪方法。通过建立参数传递模型,从现有基于深度学习的检测模型中抽取指定对象的可见光检测模型,作为红外检测的预训练模型,在采集的红外图像数据集上进行微调训练,得到基于深度学习的红外检测模型。在此基础上,建立了基于深度学习的红外与可见光决策级融合跟踪模型,进行了单波段跟踪与双波段融合跟踪对比实验。结果表明,所提方法跟踪精度和成功率比单波段跟踪均有所提升,具有较好的稳健性。
2021-06-09 10:42:29 10.73MB 机器视觉 目标跟踪 决策级融 双波段
1