支持查询软件信息、硬件信息,系统设置、系统清理、和管理工具。绿色(无须安装)、无驱动,无联网,支持 WIn7 或以上系统。请勿用于非法用途。 硬件检测: 花了几年时间完善大量的硬件信息(单单显示器制造商就支持700多个,国内外最全,合计几万条)。 支持最新CPU(核心数大于255)型号等详细参数检测。 显示器型号、坏点、显示器虚拟控制面板等。 显卡、声卡、光驱、打印机等型号详细检测。 内存通道检测(双通道、三通道、四通道)。 硬盘健康(SMART)、磁盘查错、USB外接设备记录、物理网卡 MAC 等等。 软件检测: 隐藏进程检测、进程信息、窗口信息、进程启动信息、环境变量、令牌信息、PE信息、加密压缩壳识别,开发语言、编译器等等。 系统检测设置和清理: 操作痕迹(最近运行程序、最近浏览文件夹、最近使用的项目、最近打开/保存的文件、USB 插拔、附近设备、系统启动、系统关机、用户登录、用户注销等) 驱动、服务,启动项、桌标位置保存、网络检测、内网扫描、启动项清理、右键菜单清理、软件安装,字体、屏幕保护程序清理等,信息导出、抓图、
2024-07-10 15:24:48 11.52MB windows
1
【天池】“数智教育”数据可视化创新大赛是一场旨在推动教育领域数据科学与可视化技术应用的竞赛。参赛者需要利用提供的数据集,通过数据分析和可视化手段,探索教育领域的深层次信息,展示出数据背后的故事,以提升教育质量和效率。在这样的大赛中,参与者将学习并运用多种IT技术,包括但不限于数据清洗、数据挖掘、数据可视化和机器学习等。 数据清洗是比赛的第一步,它涉及到去除异常值、缺失值处理和数据格式统一等任务。对于教育数据,这可能包括清理学生考试成绩中的错误记录、整理学生信息表中的空缺项,以及统一不同学校或地区间的课程编码等。这一步骤对后续分析的准确性和有效性至关重要。 数据挖掘则需要参赛者从海量的教育数据中发现模式、趋势和关联性。例如,可以通过聚类分析将学生分组,找出不同学习群体的特点;或者通过关联规则学习探索影响学生成绩的各种因素之间的关系。此外,时间序列分析可以用于追踪教育政策变化对学生学业表现的影响。 数据可视化是本次大赛的核心部分,它要求参赛者将复杂的数据转化为易于理解的图形。常见的可视化工具如Tableau、Python的Matplotlib和Seaborn库、R语言的ggplot2等都可以用来创建各种图表,如条形图、折线图、散点图和热力图等。有效的可视化可以帮助人们直观地理解教育数据,比如展示各学科间的成绩分布,揭示地域间的教育水平差异,或揭示教育资源分配的不均衡性。 机器学习技术在大赛中也有广泛应用,如预测模型可以预测学生的学习成果或辍学风险,分类模型可以识别影响学生成功的因素。这些模型可能基于监督学习(如逻辑回归、决策树、随机森林或支持向量机)或无监督学习(如聚类算法)。同时,深度学习方法如神经网络也可以用于复杂的特征提取和模式识别,以提供更深入的洞见。 参赛者在比赛中还需要关注数据安全和隐私保护。教育数据通常包含敏感信息,如学生的个人信息和成绩,因此在分析过程中必须遵守相关的数据保护法规,确保数据的匿名化和脱敏处理。 “数智教育”数据可视化创新大赛不仅是一次技术的较量,更是对参赛者创新思维和问题解决能力的挑战。通过这次比赛,参赛者能够提升自己的IT技能,加深对教育领域的理解,并有可能提出具有实际影响力的解决方案,推动教育行业的数字化转型。
2024-07-08 15:04:41 36.32MB
1
《Python地铁客流量分析平台:毕业设计与可视化实践》 在当今大数据时代,对城市公共交通数据的深入理解和分析显得尤为重要,特别是在人口密集的城市,如地铁客流量的统计和预测能够为城市管理、交通规划以及公共安全提供重要参考。本项目以Python编程语言为基础,结合爬虫技术、数据分析和可视化,构建了一个地铁客流量分析平台,旨在实现数据的自动采集、处理和展示,为毕业设计提供了一次实战性的应用。 项目的核心部分是数据的获取。利用Python的爬虫技术,我们可以从公开的地铁运营网站或API接口抓取实时或历史的地铁客流量数据。常见的爬虫库如BeautifulSoup和Scrapy,可以帮助我们解析HTML结构,提取所需信息。此外,对于有反爬机制的网站,可能需要使用到模拟登录、设置代理、动态加载(如Selenium)等策略来应对。 数据的预处理是分析的基础。Python中的Pandas库提供了丰富的数据处理功能,如数据清洗、缺失值处理、数据转换等。通过对原始数据进行清洗和整合,确保后续分析的准确性。同时,我们还需要注意时间序列数据的处理,如将日期和时间转换为统一格式,以便进行时间序列分析。 接下来,数据分析环节可以运用Numpy、SciPy等科学计算库,进行统计分析,如计算平均客流量、高峰期流量分布等。此外,还可以利用机器学习算法,如线性回归、时间序列预测模型(如ARIMA、Prophet),预测未来的客流量,为交通调度提供决策支持。 在可视化方面,Python的Matplotlib和Seaborn库能帮助我们生成直观的图表,如折线图展示客流量随时间的变化,柱状图比较不同站点的客流量,热力图揭示高峰时段的分布。更高级的可视化库如Plotly和Bokeh,甚至可以实现交互式的数据展示,提升用户体验。 项目的实现离不开软件工程的原则。良好的代码结构、注释和文档,使得项目易于理解和维护。此外,利用版本控制工具如Git进行版本管理,可以方便地协同开发和追踪项目进度。 总结而言,这个Python地铁客流量分析平台结合了爬虫技术、数据分析和可视化,实现了从数据采集到结果展示的完整流程,是Python在实际问题中的典型应用,对于学习Python的毕业生来说,这是一个很好的实战项目,能够提升他们的技能并为未来的职业生涯打下坚实基础。
2024-07-08 10:17:25 3.04MB
Vue+Echarts监控大屏实例九:智慧园区监控模板实例,包括源码,开发文档、素材等。 使用vue-echarts实现监控大屏搭建,开发,实现对于监控界面的相关开发资料,提供实例源码、开发过程视频及实现过程。 高德地图并展示对于报表,界面尺寸进行调整使用vh及rem设置对应尺寸以便自适应,代码使用vue3写法,整体框架进行调整,使用steup语法糖,数据使用响应式写法等。 使用HBuilderX开发,提供开发过程视频、相关文档、源码素材等。 智慧园区数据可视化监控大屏,echarts报表实现,智慧园区监控大屏。
2024-07-06 11:56:08 78.29MB vue3 echarts 数据可视化 智慧社区
其中包含 中国地图展示,地图二级下钻回钻功能,然后根据点击的省或市展示对应的name....。datav的组件。其中使用的插件 echarts datav elementui vue2的插件。并实时获取当前日期时间,精确到秒数。更有全屏组件功能,自适应组件功能。一款非常适用于各种大屏可视化项目所需要的功能
2024-07-05 15:38:01 86.85MB 可视化
1
u-center安装包。u-center是u-blox强大的GNSS评估和可视化工具,能够评估和测试u-blox定位芯片和模块。 u-center目的是使得用户能够  对u-blox 和其他 GNSS 设备进行性能测试。  配置 u-blox GNSS 定位芯片和模块。  更新 GNSS 模块上的固件  测试 u-blox 的 AssistNow 服务提供的附加性能。
2024-07-05 13:47:49 13.49MB 可视化
1
数据可视化是计算机科学与技术领域中的一个重要分支,它涉及到如何将复杂的数据集转换为易于理解的图形或图像,以便人们可以快速洞察数据背后的模式、趋势和关联。在本项目的“数据可视化大屏项目”中,学生被要求利用相关技术来完成一项期末作业,其中涉及到实时数据的处理和展示。 项目采用了Java作为主要的开发语言。Java是一种广泛应用于服务器端开发的高级编程语言,具有跨平台性、稳定性和高效性,特别适合构建大型、复杂的应用系统。在这个项目中,Java可能用于实现后端逻辑,处理数据请求和响应。 Spring框架是Java企业级应用开发的核心框架,提供了依赖注入、面向切面编程、事务管理等多种功能。在本项目中,Spring可能被用来搭建应用程序的架构,管理对象的生命周期,以及处理HTTP请求。Spring还可能与MyBatis集成,提供数据库操作的支持。 MyBatis是一个轻量级的持久层框架,它简化了Java应用与数据库之间的交互。MyBatis允许开发者编写SQL语句,将SQL与Java代码直接绑定,提高了开发效率。在这个数据可视化的项目中,MyBatis可能被用来执行数据库查询,获取实时数据。这些数据可能是用来驱动可视化图表的关键数据源。 数据可视化部分可能使用了如ECharts、D3.js、Highcharts等流行的JavaScript库,它们提供了丰富的图表类型和高度定制的可能性。通过这些库,开发者可以创建动态、交互式的数据大屏,用户可以通过鼠标悬停、点击等方式探索数据。实时数据的更新可能通过Ajax技术实现,定期或根据需求从后端获取最新数据,确保大屏展示的数据始终与数据库同步。 此外,项目可能还涉及到了前端技术,如HTML、CSS和JavaScript,它们共同构成了用户界面。HTML用于定义页面结构,CSS负责样式设计,而JavaScript则用于实现页面的交互逻辑。在数据可视化项目中,前端开发者需要将后端提供的数据适配成合适的图表格式,并确保在不同设备和浏览器上都能正常显示。 这个“数据可视化大屏项目”涵盖了计算机科学与技术的多个方面,包括后端开发(Java、Spring、MyBatis)、数据可视化(JavaScript库)、实时数据处理以及前端UI设计。通过这个作业,学生能够深入理解和实践数据处理与展示的全过程,提升自己的综合技能。
2024-07-04 20:31:51 5.61MB mybatis 数据可视化 java
1
Axure元件包括一百张高保真可视化大屏原型模板,下载直接导入Axure rp 元件库,直接编辑修改细节。 开发一张可视化大屏? 一个完整的大屏开发项目,一般分为需求调研、原型设计、模板开发、大屏调试、正式上线这样五个步骤,这其中需求调研是重中之重。 首先要进行业务需求调研,搞清楚大屏的受众是谁,明确他们对大屏的展示需求。确定大屏的主题,根据业务需求抽取出关键指标,然后定义指标的分析纬度,确定可视化图表的类型 这一步没做好,后面项目进行中就会面临无穷无尽的需求 于是这一百张模板可以省略布局排版以及做效果的时间,适合产品经理以及ui设计使用
2024-07-04 13:49:03 33.08MB axure
1
资源的详细介绍请搜索我的资源同名文章 动态爬取豆瓣排行榜数据,提取数据中的电影名、导演、上映时间、上映国家/地区、电影类型、评分、评价人数等数据制成Excel表格并保存在本地,再将数据以图表的形式显示在窗口中,要求至少包含四张图表.
2024-07-02 20:34:44 59.42MB python
1
《大数据项目实战》分析及可视化数据
2024-07-02 09:32:22 188KB
1