标题中的“海洋遥感GOCI2 nc数据与快视图批量下载MATLAB程序”涉及到的知识点主要包括以下几个方面: 1. **海洋遥感**:海洋遥感是利用卫星或航空器上的传感器,对海洋进行非接触式的观测技术。通过遥感,我们可以获取海洋表面的温度、颜色、风速、浪高、盐度、浮游生物分布等信息,对于海洋环境监测、气候研究、资源探测等具有重要意义。 2. **GOCI2**:GOCI2(Geostationary Ocean Color Imager 2)是韩国的第二代地球静止轨道海洋色遥感卫星。它能够实时监测东亚海域的水色变化,提供高分辨率的海洋光学数据,用于研究海洋生态、水质、赤潮等问题。 3. **nc数据**:nc文件是NetCDF(Network Common Data Form)格式的数据文件,是一种用于存储多维数组和元数据的标准,常用于气象学、海洋学等领域。GOCI2的nc数据包含了卫星观测到的各种海洋参数,如叶绿素浓度、悬浮物含量等。 4. **快视图**:在遥感领域,快视图是指快速生成的卫星图像预览,通常较低分辨率,用于快速查看和评估数据质量。GOCI2的快视图可以帮助用户快速了解特定日期和区域的海洋状况。 5. **MATLAB程序**:MATLAB是一种强大的数学计算和数据分析软件,广泛应用于工程、科学和金融领域。在本案例中,MATLAB被用来编写程序,自动化下载GOCI2的nc数据和快视图,节省了手动操作的时间。 6. **批量下载**:批量下载指的是通过程序化的方式,一次性下载多个文件。这里,MATLAB程序`batchdownload.m`和`quickview.m`可能实现了输入日期和区块号后,自动下载对应日期的GOCI2数据和快视图。 7. **dindex.m**:这个文件名可能是数据索引或处理函数,用于处理和组织下载的数据。 8. **GOCI2介绍与代码用法介绍.txt**:这是一份文本文件,可能包含了关于GOCI2卫星的详细信息以及如何使用提供的MATLAB代码的说明。 9. **fewcloudS009.xlsx**:可能是一个记录了低云覆盖率(fewcloud)的Excel表格,S009可能代表特定的卫星扫描区域或时间段。 综合以上,本压缩包包含的资源是一个使用MATLAB实现的工具集,用于方便地批量下载和处理GOCI2卫星的海洋遥感数据和快视图,适用于海洋科学研究和环境监测的从业者。用户只需要调整日期和区块号,就能获取所需的数据,大大提高了工作效率。
2024-07-09 16:36:44 126KB 海洋遥感 水色遥感 海洋科学
1
在使用深度学习模型研究遥感影像地物分类问题时,某些地物的遥感影像可用于训练的样本很少。同时,多样化的遥感影像获取方式产生了大量不同空间分辨率的多模态遥感影像。融合这些多模态遥感影像,弥补样本量少导致分类精度低的缺陷,是小样本的遥感影像高精度分类领域中亟待解决的问题。针对上述问题,提出了考虑两种空间分辨率遥感影像相关关系的融合分类方法。首先,使用两个并行的深度学习网络分别提取两种空间分辨率影像的高层特征;其次,将提取到的高层特征通过融合方法进行融合;最后,得到融合后的高层特征作为输入,训练整个融合分类模型。实验表明,不同融合策略的分类精度不同,本文提出的基于高层特征级别的融合策略可以有效提高分类精度。
2024-07-01 16:53:28 3.2MB 图像处理 深度学习
1
"多模态特征融合的遥感图像语义分割网络" 本文介绍了一种多模态特征融合的遥感图像语义分割网络,称为MMFNet。该网络能够融合 IRRG(Infrared、Red、Green)图像和 DSM(Digital Surface Model)图像,提取融合后的特征,并使用残差解码块(Residual Decoding Block, RDB)和复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块提取跳跃连接的多尺度特征。 MMFNet 网络的架构主要包含以下几个部分: 1. 编码器:使用双输入流的方式同时提取 IRRG 图像的光谱特征和 DSM 图像的高度特征。 2. 解码器:使用残差解码块(Residual Decoding Block, RDB)提取融合后的特征,并使用密集连接的方式加强特征的传播和复用。 3. 复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块:提取跳跃连接的多尺度特征。 实验结果表明,MMFNet 网络在国际摄影测量与遥感学会(International Society for Photogrammetry and Remote Sensing, ISPRS)提供的 Vaihingen 和 Potsdam 数据集上取得了 90.44%和 90.70%的全局精确度,相比较与 DeepLabV3+、OCRNet 等通用分割网络和 CEVO、UFMG_4 等同数据集专用分割网络具有更高的分割精确度。 本文的贡献在于: 1. 提出了多模态特征融合的遥感图像语义分割网络,能够融合 IRRG 图像和 DSM 图像,提高了遥感图像语义分割的精确度。 2. 引入了残差解码块(Residual Decoding Block, RDB)和复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块,提高了网络的表达能力和泛化能力。 本文提出了一个多模态特征融合的遥感图像语义分割网络,能够提高遥感图像语义分割的精确度和泛化能力,有助于国土资源规划、智慧城市等领域的应用。
2024-07-01 16:47:59 1.49MB
1
Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-06-30 13:03:46 8.34MB matlab
1
本实验报告旨在介绍遥感数字图像校正的基本方法和步骤,具体包括辐射定标、大气校正和几何校正。本实验使用软件ENVI 5.0版本作为平台进行实验,以校正一幅遥感数字图像为例。 在实验目的方面,本实验旨在: 1.进行辐射定标,将数字图像中的原始数据转换为能量单位。 2.进行大气校正,消除大气的影响,使得数字图像能够更加准确地反映地面的信息。 3.进行几何校正,校正数字图像的几何形态,使得数字图像在空间上更加准确地对应地面。 在实验内容方面,本实验分为以下三个步骤: 1.进行FLAASH校正,使用FLAASH算法进行辐射定标,将数字图像中的原始数据转换为辐射亮度温度,消除仪器响应的影响。 2.进行大气校正,使用MODTRAN模型对数字图像进行大气校正,消除大气的影响,得到真实的地表反射率。 3.进行几何校正,进行数字图像的投影和重采样,使得数字图像能够更加准确地对应地面的实际情况。 在实验数据和平台方面,本实验使用软件ENVI 5.0版本作为平台进行实验,并以一幅遥感数字图像为实验数据。实验数据包括原始数字图像和校正后的数字图像。
2024-06-05 10:10:03 7.05MB envi 实验报告 遥感数字图像处理 gis
1
遥感应用分析原理与方法.pdf
2024-05-29 10:29:00 1.04MB 技术文档
高分一C遥感影像数据集
2024-05-28 15:29:14 101B 数据集 遥感影像
1
1、数据来源:资源环境科学与数据中心 2、时间跨度:2020 3、区域范围:全国 4、指标说明: 中国土地利用现状遥感监测数据库是目前我国精度最高的土地利用遥感监测数据产品,已经在国家土地资源调查、水文、生态研究中发挥着重要作用。目前数据的应用领域已经涉及到国民经济的各个方面并已初步形成稳定的数据用户群。用户来源包括国内政府决策部门、行政管理部门、研究机构、大学、国防部门和商业机构以及包括联合国有关组织、大学和其他研究机构的国外用户。先后支持了国家西部大开发科技规划、2000年春华北沙尘暴成因研究、全国第二次土壤侵蚀调查、全国生态环境监测网络的建设、2008年汶川地震灾后评估、2009年春南方冰雪冻害的灾后恢复重建等重大应用。取得了显著的社会与经济效益。 土地利用类型包括耕地、林地、草地、水域、居民地和未利用土地6个一级类型以及25个二级类型。 具体分类系统如下: 一级类型 二级类型 编号 名称 编号 名称 含义 1 耕地 - - 指种植农作物的土地,包括熟耕地、新开荒地、休闲地、轮歇地、草田轮作物地;以种植农作物为主的农果、农桑、农林用地;耕种三年以上的滩地和海涂。 - - 1
2024-05-22 16:29:48 3.02MB 土地利用 LUCC 遥感数据
1
SARScape5.2.1&读取Sentinel-1B数据为slc与pwr
2024-04-03 14:11:56 818.79MB 雷达遥感 SARScape 数据处理
1
专题中应用ETM+融合影像,提取相关生态因子,应用较成熟的自然生态环境评价模型完成整个自然生态环境评价流程。专题涉及植被覆盖度计算、地形因子提取等内容。
2024-03-02 11:06:08 221KB 课程设计
1