为提高供电系统的可靠性,采用自研的串联型故障电弧发生器开展了不同负载类型、不同电流下的串联型故障电弧实验.以故障电弧电流信号为研究对象,对时间序列进行时域、频域特性分析,提取故障电流在时域、频域的特征参数,构建串联型故障电弧的特征向量,采用主成分分析方法对特征向量进行去冗余、降维处理.最后以主成分分析后的特征向量作为输入,从可靠性角度对比分析LVQ神经网络与K近邻算法故障诊断的优越性,建立了经K循环寻优处理后的K近邻串联型故障电弧诊断模型,并对诊断模型进行了抗扰动分析、泛化性分析.结果表明,该方法能有效地实现对电连接器串联型故障电弧的识别.
2022-05-22 21:07:23 1.29MB 行业研究
1
提出一种改进的基于隐马尔可夫模型的人脸识别方法 利用人脸隐马尔可夫模型的结构特征和Viterbi 算法的特点,对特征观察序列进行分割,使用部分序列对所有隐马尔可夫模型递进地计算最大相似度,同时排除相似度最小的隐马尔可夫模型,减少观察序列的计算次数,提高识别效率 实验结果表明,该方法能在不降低识别率的情况下,有效提高识别速度。
2022-05-19 06:54:30 1.17MB 人脸识别 隐马尔可夫 序列分割
1
人脸局部遮挡表情特征快速识别方法仿真.pdf
1
matlab姿态识别系统源码运行 Face-Recognition Practice of two Pattern Recognition methods. Face Recognition based on SVM and SRC. 一 背景 1.1 支持向量机简介 支持向量机(Support Vector Machine,SVM)是AT&TBell 实验室的V.Vapnik等人提出的一种机器学习算法,是迄今为止最重要的机器学习理论和方法之一,也是应用最广泛、综合效果最好的模式分类技术之一。到目前为止,支持向量机已应用于孤立手写字符识别、网页或文本自动分类、说话人识别、人脸检测、性别分类、计算机入侵检测、基因分类、遥感图象分析、目标识别、函数回归、估计、函数逼近、密度估计、时间序列预测及数据压缩、文本过滤、数据挖掘、非线性系统控制等各个领域的实际问题中。 支持向量机是一种二分类模型,其基本定义是特征空间上的间隔最大的线性分类器(当采用线性核时),即支持向量机的学习策略是间隔最大化,最终转化为凸二次规划问题的求解。该方法在1995年正式发表,因其在文本分类任务中显示出卓越性能,很快成为
2022-05-15 15:32:08 589KB 系统开源
1
为提高人类行为识别准确性的同时降低实现过程的复杂程度,提出基于智能手机加速度传感器与陀螺仪数据对六种日常基础行为进行识别的方法。在分析传感器框架的基础上,对加速度传感器进行数据采集并对原始数据进行数据预处理,然后采用主成分分析方法结合已有知识对数据统计特征进行降低维数处理,再利用机器学习算法实现对行为特征的分类与识别,目的是简化基础行为的识别过程并提高数据的利用率。实验测试结果验证了决策树与支持向量机分类器结合使用的有效性,识别准确率可接近97%。
1
人工智能-机器学习-护士助手机器人的超声波障碍物识别方法研究.pdf
2022-05-06 18:15:40 6.2MB 人工智能 机器学习 文档资料
安全技术-网络信息-面向可信用户和主题社区的社交网络在线话题识别方法研究.pdf
2022-05-06 09:00:08 6.5MB 文档资料 安全 网络
基于关键帧双流卷积网络的人体动作识别方法
2022-05-05 10:30:18 979KB 研究论文
1
人工智能-机器学习-浮法玻璃缺陷的智能识别方法.pdf
2022-05-05 09:10:04 2.54MB 人工智能 机器学习
基于GIS 的区域关键性生态用地空间结构识别方法探讨
2022-05-04 14:06:17 1.47MB 文档资料