对日益严重的电信欺诈问题,文章设计一个有效、可扩展的电信欺诈管理系统。该系统能够对运营商及第三方的多源数据进行统一、有效管理,采用大数据分析的方法准实时发现电信欺诈事件,针对新型欺诈事件可以快速扩展、升级,能够满足内、外部用户的多重业务需求。试验结果表明,本系统具有较好的性能,可以应用于大数据环境下的准实时识别电信欺诈事件。
2021-12-16 15:42:20 1.21MB 工程技术 论文
1
欧洲的信用卡持卡人在2013年9月2天时间里的284807笔交易数据,其中有492笔交易是欺诈交易,占比0.172%。数据采用PCA变换映射为V1,V2,...,V28 数值型属性,只有交易时间和金额这两个变量没有经过PCA变换。输出变量为二值变量,1为正常,0为欺诈交易。
2021-12-15 12:09:54 68.1MB 欺诈检测 风险识别
1
此资料里面的内容主要是解决如何在大数据集(本资料中是28w)中检测出欺诈数据集(本资料中是500),通过对原始数据集的处理之后,利用机器学习的方法,对其进行建模处理,然后不断进行模型的调优,最后达到检测效果。
2021-12-13 16:39:45 172.11MB 信用卡 欺诈检测
1
Kaggle IEEE-CIS欺诈检测
2021-12-08 15:29:19 18KB Python
1
欺诈是电信行业面临的主要挑战。 这些欺诈者损失了大量收入,这些欺诈者开发了不同的技术和策略来欺骗服务提供商。 对于要保留在该行业中的任何服务提供商,应将这些欺诈者的活动造成的预期损失降到最低,甚至不能完全消除。 但是由于海量数据的性质和所涉及的数百万订户的缘故,要发现这一群人变得非常困难。 为此,需要一种最佳的分类器和预测概率模型,该模型可以捕获订户的当前和过去的历史,并对它们进行相应的分类。 在本文中,我们开发了一些预测模型和最佳分类器。 我们模拟了八十(80)个订户的样本:他们的呼叫数量和呼叫持续时间,并将其分类为四个子样本,每个样本大小为二十(20)个。 我们获得了各组的先验概率和后验概率。 我们将这些后验概率分布分为两个样本多元数据,每个样本都有两个变量。 我们开发了区分真实订阅者和欺诈订阅者的线性分类器。 最优分类器(βA+ B)的后验概率为0.7368,我们根据该最优点对订户进行分类。 本文关注的是国内用户,感兴趣的参数是每小时的通话次数和通话时间。
2021-12-02 10:22:21 776KB 欺诈识别 电讯 最佳分类器 先验概率
1
欺诈识别 使用RNN训练和测试模型以预测信用卡欺诈交易。 #如何使用模型: 从链接下载名为creditcard.csv的数据集。 下载python脚本欺诈_detection.py 将脚本和csv数据文件保存在同一文件夹中,否则在脚本文件的第13行中提及csv文件的路径 运行代码以查看培训和测试的准确性
2021-11-24 11:49:39 2.86MB Python
1
安然欺诈项目 休斯顿的安然综合体- 安然是美国最大的公司之一。 由于公司欺诈,它破产了。 由于联邦调查的结果,大量的安然数据(电子邮件和财务数据)已进入公共记录。 该项目旨在建立一个分类器,该分类器可以基于公共的安然财务和电子邮件数据集来预测安然员工涉及欺诈的情况。 有关安然丑闻的更多详细信息,请参见 。 工作流程 该项目分为3个主要阶段: 功能选择和工程 算法选择 选型 特征选择与工程 首先,清理数据; 由于我们对个人数据感兴趣,因此删除了与“总计”和“公园旅行社”相对应的数据。 另外,“ LOCKHART EUGENE E”数据全为零,并且也被删除。 一些功能也被删除。 由于“ to
2021-11-21 19:00:23 2.77MB python machine-learning random-forest scikit-learn
1
梳理社工类攻击手法、手段以及对应的防范方法。 安全领域,识别风险方有机会解决风险,识别风险需要两大前提: 1. 安全基础知识 2. 安全意识与思维方式
2021-11-20 16:28:38 19.83MB 社会工程学 钓鱼 欺诈
1
使用机器学习识别欺诈(项目概述) 项目目标 在2000年,安然(Enron)是美国最大的公司之一。 到2002年,由于广泛的公司欺诈行为,该公司破产了。 在最终的联邦调查中,大量的通常是机密信息被输入到公共记录中,包括成千上万的电子邮件和高级管理人员的详细财务数据。 这些数据已与手工生成的欺诈案件中感兴趣的人的名单相结合,这意味着被起诉,与政府达成和解或辩诉交易或作证以换取起诉豁免权的个人。 这些数据为146名员工创建了21个要素的数据集。 该项目的范围是创建一种算法,该算法能够识别可能实施欺诈的安然员工。 为了实现此目标,部署了探索性数据分析和机器学习以从异常值中清除数据集,识别新参数并将
1
2019年出的移动数字金融与电子商务反欺诈白皮书,由CAICT泰尔终端实验室、中移动信息技术有限公司牵头编写,北京数美时代、电话邦、和讯华谷等单位参与编写。
2021-10-15 17:57:57 13.3MB 反欺诈
1