【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:40 2.49MB 机器学习 学习 文档资料 人工智能
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:38 6.22MB 机器学习 学习 文档资料 人工智能
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:38 6.7MB 机器学习 学习 文档资料 人工智能
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:37 3.1MB 机器学习 学习 算法 文档资料
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:36 913KB 机器学习 学习 文档资料 人工智能
《机器学习(周志华)》学习笔记
2022-05-02 14:00:09 6.85MB 机器学习 学习 综合资源 人工智能
社交媒体文本中的情感分析,运用了情感字典和机器学习的方法.zip
2022-04-29 18:10:10 74KB 媒体 机器学习 学习 文档资料
ML机器学习入门 神经网络基础 BP神经网络详解 BP神经网络模型与学习算法 清晰易懂
2022-04-28 09:09:09 531KB 神经网络 机器学习 学习 算法
在对发票原始图像进行了预处理的基础上,通过利用BP神经网络来进行机器学习以后,对发票进行自动识别读取,利用MATLAB进行仿真,并且对发票识别后的结果进行了统计分析,对文中所建立的模型成果进行了充分的论证。 描述了基于深度学习的发票图像信息识别算法的研究背景意义、深度学习、计算机视觉和文本检测识别国内外现状。然后提出了一种基于BP神经网络的发票图像信息识别算法,可以正确提取和识别自然场景中的增值税发票图像中的信息,单区域的信息识别精度达到99.10%,平均信息识别精度达到96.20%。实现信息的自动识别、输入和记忆,节约清算人员和财务人员的时间,大幅提高办公效率,解决清算困难、时间紧张等问题
2022-04-27 16:05:52 1.17MB 神经网络 matlab 机器学习 学习
1
机器学习主要利用已知数据学习和推理其中未知的、潜在的概率分布的重要特性,揭示数据样本中变量(或特征)之间的关系。影响机器学习性能的最重要因素之一是向系统提供的数据的质量。随着计算机技术的高速发展和广泛应用,高维度的大规模数据不断涌现和积累,这些高维数据中存在着大量的冗余、无关特征,给现有的机器学习算法提出了更高的要求,带来了巨大挑战。特征选择是机器学习、模式识别和统计学等领域的重要研究课题之一,是数据预处理的一种重要而常用的手段。特征选择根据样本的分布特性,基于某种评估标准,从原始特征空间中选取一个最优的特征子集代替原始特征空间,所选择的特征子集具有与原始特征空间相近甚至更好的分类性能。特征选择算法可以有效地剔除冗余特征和无关特征,提高机器学习算法的泛化性能和运行效率,在实际应用中得到了广泛的推广。特征选择算法主要分为 Filter、Wrapper 和 Embedded 模式三大类,其中 Filter 模式由于其速度快和通用性强等特点备受青睐。然而,现有的 Filter特征选择算法存在这样的问题:要么选择出最具区分能力的若干特征作为最优特征子集,要么选择出区分能力较高且相互之间不冗余的
2022-04-27 16:05:51 3.42MB 算法 机器学习 学习 分类