具有零强迫波束成形的MISO SWIPT系统的能效优化
2024-08-06 12:38:35 3MB 研究论文
1
粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现 粒子群优化算法PSO的c++的实现
2024-08-05 14:49:48 9KB PSO 粒子群算法
1
无线传感器网络(WSN)是由大量部署在监测区域内的小型传感器节点组成,这些节点通过无线通信方式协同工作,用于环境感知、目标跟踪等任务。在实际应用中,一个关键问题是如何实现有效的网络覆盖,即确保整个监测区域被尽可能多的传感器节点覆盖,同时考虑到能量消耗和网络寿命的优化。遗传算法(Genetic Algorithm, GA)是一种启发式搜索方法,适用于解决这类复杂优化问题。 本资料主要探讨了如何利用遗传算法解决无线传感器网络的优化覆盖问题。无线传感器网络的覆盖问题可以抽象为一个二维空间中的点覆盖问题,每个传感器节点被视为一个覆盖点,目标是找到最小数量的节点,使得所有目标点都被至少一个节点覆盖。遗传算法通过模拟生物进化过程中的遗传、变异和选择等机制,寻找最优解决方案。 遗传算法的基本步骤包括: 1. 初始化种群:随机生成一定数量的个体(代表可能的解决方案),每个个体表示一种传感器节点布局。 2. 适应度函数:根据覆盖情况评估每个个体的优劣,通常使用覆盖率作为适应度值。 3. 选择操作:依据适应度值,采用轮盘赌选择或其他策略保留一部分个体。 4. 遗传操作:对保留下来的个体进行交叉(交换部分基因)和变异(随机改变部分基因),生成新一代种群。 5. 终止条件:当达到预设的迭代次数或适应度阈值时停止,此时最优个体即为问题的近似最优解。 在无线传感器网络优化覆盖问题中,遗传算法的具体实现可能涉及以下方面: - 编码方式:个体如何表示传感器节点的位置和激活状态,例如二进制编码或实数编码。 - 交叉策略:如何在两个个体之间交换信息,保持解的多样性。 - 变异策略:如何随机调整个体,引入新的解空间探索。 - 覆盖度计算:根据传感器的通信范围和目标点位置,计算当前覆盖情况。 - 能量模型:考虑传感器的能量消耗,优化网络寿命。 - 防止早熟:采取策略避免算法过早收敛到局部最优解。 提供的Matlab源码是实现这一优化过程的工具,可能包含初始化、选择、交叉、变异以及适应度计算等核心函数。通过运行源码,用户可以直观地理解遗传算法在解决无线传感器网络覆盖问题中的具体应用,并根据实际需求进行参数调整和优化。 总结来说,这个资料是关于如何利用遗传算法来解决无线传感器网络的优化覆盖问题,其中包含了Matlab源代码,可以帮助学习者深入理解算法原理并进行实践。通过分析和改进遗传算法的参数,可以有效地提高网络的覆盖性能,降低能耗,从而提升整个WSN的效率和可靠性。
2024-08-04 15:44:09 2.08MB
1
【能量管理系统设计】能量管理系统是基于总体电耗控制优化算法构建的,旨在通过高效管理和调控能源消耗,以达到节能减排的目的。这种系统的核心在于其优化算法,它不仅能减少由于过剩流量和扬程导致的电能浪费,还能确保整个系统运行在最高效率点,从而在满足生产需求的同时实现最大节能。 【总体电耗控制优化算法原理】该算法通过软硬件结合的方式,全面考虑输送介质系统和配电系统的运行消耗,根据泵机和电机的额定参数,采用优化计算方法确定最佳的泵机搭配和变频器调速方案。这不仅减少了富裕流量和扬程的电耗,还确保了整个系统的整体效率。实际应用中,与单独使用变频调速相比,可以实现更高的节能效果,节电率可达7%至33%。 【设计目标】本项目的目标是开发一个基于多重安全性机制的SCADA(Supervisory Control And Data Acquisition)总体架构的能量管理系统应用平台。该平台需在不同硬件和软件上提供统一的运行环境,支持多平台应用,具备高可靠性,分布式数据库容量大,可实现分布式实时监控和综合调度,支持多种通信协议和工业标准接口,具备物联网技术的多系统集成能力,并提供灵活的数据共享和交互接口。 【总体方案】设计遵循国际和行业标准,强调系统的开放性和标准化,选用标准化硬件平台,软件设计模块化、接口完整且开放,以适应未来扩展和第三方集成。系统运行环境支持多种硬件平台、操作系统、数据库管理系统和网络协议,确保在不同安全级别下满足能量管理需求。 【模块设计】 1. 系统运行环境模块:提供兼容多种架构、网络环境、操作系统和数据库管理系统的支持,确保系统的安全性和适应性。 2. 系统应用平台模块:提供统一运行环境,维护系统稳定,实现事件管理和消息管理,确保系统的实时性、安全性和可靠性。 基于总体电耗控制算法的能量管理系统是一个集成了优化算法、分布式监控和综合调度、多系统集成和高安全性的解决方案,旨在提升工业生产过程中的能源效率,降低能耗,适用于电力、冶金、石化等高耗能行业,对于推动绿色制造和可持续发展具有重要意义。
1
以ADGM高速数控车床用电主轴为研究对象,以优化主轴的性能为目标,利用有限元分析软件ANSYS Workbench优化设计功能,对主轴的悬伸量、跨距和电机转子安装位置进行优化。对优化前后主轴的静动态特性进行对比分析,结果表明优化后主轴的径向静刚度提高了38%,1阶固有频率提高了1%,充分改善了主轴性能,并且主轴长度缩短了40 mm,减少了生产成本。 【基于ANSYS Workbench的ADGM电主轴结构优化】的研究着重于提升高速数控车床电主轴的性能。在数控机床中,电主轴扮演着核心角色,其静态和动态性能直接影响到加工精度和产品质量。电主轴的刚度、固有频率以及临界转速是衡量其性能的关键指标。 在本研究中,ADGM高速精密数控车床的电主轴被选为研究对象。研究人员利用ANSYS Workbench这一强大的有限元分析软件,进行了结构优化设计。优化主要集中在三个方面:主轴的悬伸量、主轴跨距和电机转子的安装位置。通过调整这些参数,旨在改善电主轴的性能,同时降低成本。 在ANSYS Workbench的优化设计原理中,目标是在满足特定性能目标和约束条件下,通过改变设计变量,寻求最佳性能和最低成本。在电主轴的案例中,优化目标包括提高主轴的刚度和固有频率,而优化变量则涉及主轴的几何特征。 通过优化,电主轴的径向静刚度提升了38%,这意味着电主轴抵抗径向位移的能力显著增强,从而能更好地保持加工精度。此外,1阶固有频率也提高了1%,这有助于避免共振,确保主轴在高速运转时的稳定性。优化还导致主轴长度缩短了40毫米,这不仅降低了生产成本,也使得电主轴更加紧凑,便于安装和维护。 该研究的结果表明,采用ANSYS Workbench进行结构优化可以显著提升电主轴的性能。这种优化方法在未来的数控机床设计中具有广泛的应用前景,特别是在追求高精度、高效率的制造领域。通过不断的技术创新和优化,可以进一步推动我国高档数控机床与基础制造装备的发展,提高国内制造业的整体水平。
2024-07-30 18:31:11 886KB 行业研究
1
基于遗传算法(GA)优化长短期记忆网络(GA-LSTM)的时间序列预测。 优化参数为学习率,隐藏层节点个数,正则化参数,要求2018及以上版本,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-07-27 16:14:12 28KB 网络 网络 matlab lstm
1
为获得更为优越的露天矿山境界,构建了集经济时间序列预测、矿岩时间属性赋值和动态经济指标计算为一体的境界全动态优化方法。金属价格是矿山境界优化过程中最重要的因素之一,以金属价格历史数据为平台,通过创建合适时间序列模型,对未来价格做出预测,以预测结果为基础,运用L-G图论法生成系列境界方案,根据矿山实际情况编排进度计划,实现矿岩块参数赋值,将预测结果代入到矿岩块体模型中,计算境界净现值(NPV),经多方案比较确定最优境界。以某铜矿山为例,通过对近50 a伦敦金属交易所(LME)铜精矿季度平均结算价格分析处理,建立了自回归求和移动平均模型(ARIMA),实现了未来15 a铜价预测,最终确定了矿山经济最优境界。建立于金属价格预测基础上的境界动态优化方法所得方案NPV更接近生产实际,其优化结果可更好为矿山设计及未来生产提供基础支撑。
1
微电网是一种分布式能源系统,它能够在与主电网连接或处于孤岛模式下独立运行。在孤岛模式下,微电网的调度优化问题变得尤为重要,因为需要确保系统的稳定性和经济性。本资料主要探讨了如何利用遗传算法来解决孤岛型微电网的成本最低调度优化问题,并提供了MATLAB代码作为辅助理解。 遗传算法是一种模拟自然选择和遗传机制的全局优化方法,它通过模拟生物进化过程中的“适者生存”原则,逐步改进解空间中的个体,从而逼近问题的最优解。在微电网调度优化中,遗传算法可以用于寻找电力系统中各个能源设备的最佳运行策略,包括发电机、储能装置和负荷的调度,以达到最小化运营成本的目标。 在微电网中,多种能源如太阳能、风能、柴油发电机等并存,它们的出力特性各异,调度时需要考虑其不确定性、波动性和非线性。遗传算法可以有效地处理这些复杂因素,通过编码、初始化、交叉、变异和选择等步骤来搜索最优解决方案。编码通常将微电网中的设备状态和调度决策转化为适合遗传操作的数字串;初始化阶段生成初始种群;交叉和变异操作则保证了种群的多样性,避免过早收敛;选择过程则是根据适应度函数(在此案例中可能是总成本)淘汰劣质个体,保留优良基因。 资料中的MATLAB代码实现了上述遗传算法的全过程,并且针对孤岛型微电网进行了定制化设计。代码可能包含了以下部分:数据输入模块,用于定义微电网的设备参数和运行约束;目标函数定义,计算运行成本;遗传算法的核心实现,包括种群生成、适应度评估、选择、交叉、变异等操作;以及结果分析和可视化。 此外,描述中提到的其他领域如智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划和无人机,都是MATLAB在工程和科研中广泛应用的领域。这些技术虽然没有直接关联于微电网优化,但都体现了MATLAB作为一种强大的多学科工具箱,可以支持各种复杂的建模和仿真任务。 这个压缩包提供了一个使用遗传算法解决孤岛型微电网调度优化问题的实例,对于学习微电网优化和遗传算法的实践者来说是宝贵的资源。通过阅读和运行代码,可以深入理解这两种技术的结合及其在实际问题中的应用。同时,这也提醒我们,MATLAB作为一款强大的工具,可以跨越多个工程和科学领域,实现多元化的问题解决。
2024-07-15 20:16:14 233KB matlab
1
为校正Pareto-Beta跳扩散期权定价模型,首先,利用Pareto-Beta跳扩散模型和双指数跳扩散模型之间的联系使模型参数减少,然后,通过使欧式期权价格和相应的市场价格之间的均方误差最小将模型校正问题转化为局部最优化问题,通过在均方误差项增加一个惩罚函数保证了解的存在性和唯一性.为了提高模型校正的效率,利用快速傅立叶变换方法计算欧式期权价格.最后,将模型和校正算法应用于S&P 500指数期权进行实证分析,数值结果显示,所提校正算法具有较好的稳定性.
1
CSDN海神之光上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-07-11 17:36:08 143KB matlab
1