内容概要:本文详细介绍了基于51单片机AT89C52的教室智能照明和人数统计系统的设计与实现。系统采用光敏电阻检测光线强度,红外对管进行人数统计,并通过LED灯模拟教室照明。系统支持自动和手动两种模式,自动模式下可根据时间和人数自动调节灯光亮度,手动模式下可通过按钮控制灯光。此外,系统还包括时钟芯片DS1302用于显示时间,以及液晶屏LCD1602用于显示人数和时间信息。文中还分享了一些调试经验和优化技巧,如防抖处理、滑动窗口滤波算法等。 适合人群:电子工程专业学生、嵌入式系统开发者、单片机爱好者。 使用场景及目标:适用于希望了解单片机应用项目设计流程和技术细节的人群,特别是那些想要掌握智能照明系统和人数统计系统设计方法的学习者。 其他说明:文中提供了完整的工程文件,包括仿真、程序、原理图、PCB和报告,可供读者参考和实践。
2025-10-23 21:31:27 1.73MB
1
内容概要:本文介绍了一种计算光子晶体陈数(Chern Number)的联合仿真与数据处理方法,通过COMSOL Multiphysics软件模拟光子晶体结构并计算其本征电磁场,随后导出场数据至MATLAB平台进行后处理,利用自定义算法程序提取波矢、频率及场分布信息,进而实现陈数的数值计算。文中以旋磁介质为例,参考已有文献中的MATLAB代码框架,展示了从数据导入、关键参数提取到陈数函数计算的完整流程,强调了拓扑物理量在光子晶体研究中的重要性。 适合人群:具备COMSOL建模基础和MATLAB编程能力,从事光子晶体、拓扑光子学或计算物理相关研究的研究生、科研人员及工程师。 使用场景及目标:①研究光子晶体的拓扑能带结构;②计算具有非平凡拓扑特性的光子系统陈数;③实现多物理场仿真与数值分析的协同工作流程。 阅读建议:使用者应熟悉COMSOL的本征模求解器与数据导出格式,并掌握MATLAB中矩阵运算与数值积分方法,建议结合文中提及的开源代码链接进行调试与验证,以提升计算准确性与效率。
2025-10-23 20:36:10 836KB
1
利用Comsol计算光子晶体陈数(Chern Number)的方法及Matlab数据处理程序.pdf
2025-10-23 20:34:08 65KB
1
《最优化原理和方法》是北京工业大学出版的一本专业书籍,专注于探讨最优化这一关键的数学和计算领域。最优化理论是解决实际问题,如工程设计、经济规划、数据分析等领域的核心工具。这本书旨在为读者提供一个全面的视角,深入理解最优化的基本原理及其应用。 最优化原理主要包括线性规划、非线性规划、动态规划、整数规划、几何编程、随机优化、全局优化等多个方面。线性规划是最早被系统研究的最优化问题类型,通过构建线性目标函数和线性约束条件,寻找最优解。非线性规划则涉及到目标函数或约束条件为非线性的情况,处理起来更为复杂。动态规划则是解决多阶段决策问题的有效方法,通过建立状态转移方程来寻找最优策略。 在实际应用中,整数规划往往用于处理具有离散变量的问题,比如资源分配、生产计划等。几何编程是一种特殊的非线性优化形式,适用于处理涉及几何形状和尺寸的设计问题。随机优化处理的是含有随机因素的优化问题,如风险管理和金融工程。全局优化则致力于找到全局最优解,对于非凸或非连续函数,这是一个极具挑战性的任务。 最优化方法涵盖了很多算法,如梯度下降法、牛顿法、拟牛顿法、单纯形法、动态规划的贝尔曼方程解法、遗传算法、模拟退火算法等。这些算法各有优劣,适应不同的问题场景。例如,梯度下降法是求解无约束优化问题的常用方法,适合大规模数据集;而牛顿法和拟牛顿法则适用于寻找局部极小值,它们利用二阶导数信息,通常比一阶方法更快收敛。 此外,书中可能还会涵盖一些现代最优化的热点话题,比如机器学习中的优化问题、深度学习网络的训练策略、大数据环境下的分布式优化算法等。这些内容不仅理论性强,而且与实际应用紧密相连,能够帮助读者提升解决实际问题的能力。 压缩包中的《最优化原理和方法北京工业大学.pdf》很可能是这本书的电子版,读者可以通过它详细学习各种最优化理论和方法。"E书说明.txt"可能是关于如何阅读和使用电子书的指南,"阅读器下载.htm"则可能是推荐的电子书阅读器下载链接,确保用户能顺利阅读PDF文件。 《最优化原理和方法》是一本深入浅出的教程,无论你是初学者还是经验丰富的从业者,都能从中受益,提升自己在最优化领域的理论知识和实践技能。
2025-10-23 19:42:14 3.18MB
1
利用COMSOL进行齿轮啮合刚度模拟的具体步骤和技术要点。首先,通过调用COMSOL内置的齿轮几何生成器快速建立齿轮模型,并设置了合理的材料属性和边界条件。接着,重点讲解了接触对的设置,推荐使用'粘附-滑动'方式并给出了关键参数的选择范围。然后,在网格划分阶段强调了对齿面的重点处理以及优化技巧。求解过程中,指出了需要开启大变形选项并合理设置时间步长。最后,通过后处理提取接触力数据,计算得到时变刚度,并进行了频域变换以获得平均刚度值。整个过程还提供了实用的小贴士,如调整啮合位置偏移量解决不收敛问题等。 适合人群:从事机械工程仿真研究的技术人员,尤其是对齿轮传动系统感兴趣的工程师。 使用场景及目标:适用于需要精确评估齿轮传动系统的动态特性、优化设计参数的研究项目。目标是掌握一套完整的齿轮啮合刚度模拟流程,提高仿真的准确性。 其他说明:文中提到的方法经过实际验证,能够将误差控制在5%以内,为后续的NVH分析提供可靠的数据支持。
2025-10-23 19:15:18 241KB
1
别看一个示波器探头很简单,其实还是很有讲究的。以下是圈圈使用示波器探头的一点小经验,供大家使用时参考一下。   首先是带宽(在电子学中,它指的是可以保持电路稳定工作的频率范围),这个通常会在探头上写明,多少MHz。如果探头的带宽不够,示波器的带宽再高也是无用,瓶颈效应。
2025-10-23 16:08:29 30KB 示波器探头
1
升级 load packefile tftp 10.11.104.100 MA5600V800R015C00.SPC107.bin (10.11.104.100)电脑IP 电脑和OLT要能PING通
2025-10-23 13:13:59 68.3MB
1
在MATLAB环境中,FFTBeamPropagation方法是用于模拟光束传播的一种高效工具,特别是在光学系统设计和光纤通信领域中广泛应用。这个方法基于快速傅立叶变换(FFT)算法,能够快速计算光束经过不同介质(如光波导和自由空间)时的传播特性。 标题中的“matlab开发-fftbeampropagation方法”指的是一种使用MATLAB编程实现的光束传播模拟技术。此方法主要利用了MATLAB强大的数值计算能力,通过FFT来快速求解波动方程,从而实现对光束传播行为的精确建模。 描述中提到的“在不同光波导和自由空间中实现快速傅立叶变换”,意味着这个方法不仅适用于有结构的光波导(如Y分支、Mach-Zehnder干涉仪等),也能够处理无约束的自由空间传播问题。光波导通常用于光学信号传输和处理,而自由空间传播则涉及天线设计、激光通信等领域。 从压缩包子文件的文件名称列表来看: 1. `machzender.bmp` 和 `BPM_mach_zender.m`:Mach-Zehnder干涉仪是一种常见的光学干涉装置,`BPM_mach_zender.m` 可能是一个MATLAB脚本,用于模拟光束在Mach-Zehnder干涉仪中的传播。 2. `ybranch.bmp` 和 `BPM_Y_Branch.m`:Y分支,即Y型光波导分路器,是光通信和集成光学中的重要元件,`BPM_Y_Branch.m` 用于模拟光束在Y分支波导中的传播行为。 3. `BPM_2step.m`:可能是一个两步光束传播模型,这种模型常用于更复杂情况下的光束传播模拟。 4. `BPM_triangle.m`:三角形结构可能是指一种特定形状的光波导或光栅结构,该脚本可能用于分析这种结构中的光束传播。 5. `BPM_free_space.m`:这应该是用于模拟光束在自由空间中的传播,可以处理激光束在大气或其他无约束环境中的传播问题。 6. `BPM_2step.m`、`BPM_mach_zender.m`、`BPM_Y_Branch.m`、`BPM_triangle.m` 和 `BPM_free_space.m` 这些文件都是MATLAB脚本,它们实现了不同的光束传播模型,可以根据具体的应用需求选择合适的模型进行计算。 7. `license.txt` 文件通常包含软件的授权信息,可能说明了这些MATLAB代码的使用许可条款。 这些文件提供了一个完整的MATLAB光束传播模拟工具箱,涵盖了从简单的自由空间传播到复杂的光波导结构,对于理解和研究光学系统有着重要的价值。通过对这些脚本的学习和实践,用户可以深入理解FFT在光束传播模拟中的应用,并能够进行自定义的光学系统设计和分析。
2025-10-23 10:43:02 11KB 数据导入与分析
1
内容概要:本文详细介绍了在Pytorch环境下实现的一种基于深度学习模型的可学习小波变换方法。文中首先解释了小波变换的基本概念,包括离散小波变换(DWT)和连续小波变换(CWT),以及它们在信号处理和图像处理中的广泛应用。接着,重点讨论了如何将小波变换与深度学习相结合,在Pytorch框架下构建一个自适应优化算法框架。该框架能够在训练过程中自动从小波变换中学习到数据的最佳表示方式,并根据目标函数进行优化。文章还提供了一段简化的代码示例,演示了如何在实际项目中实现这一方法。最后,作者对未来的研究方向进行了展望,强调了这种方法在提高数据处理效率方面的巨大潜力。 适合人群:对深度学习和小波变换有一定了解的研究人员和技术开发者。 使用场景及目标:适用于需要对复杂信号或图像数据进行高精度分析和处理的应用场景,如医学影像分析、音频处理、地震数据分析等。目标是通过结合深度学习和小波变换的优势,提升数据处理的准确性和效率。 其他说明:本文不仅提供了理论上的探讨,还给出了具体的实现代码,有助于读者快速上手并在实践中验证所学内容。
2025-10-22 15:11:43 410KB
1
渗透测试报告 渗透测试报告示例渗透测试报告示例 渗透测试报告示例渗透测试报告示例渗透测试报告示例渗透测试报告示例渗透测试报告示例渗透测试报告示例渗透测试报告示例渗透测试报告示例渗透测试报告示例渗透测试报告示例渗透测试报告示例
2025-10-22 12:12:22 88KB 渗透测试
1