面对大数据时代消费者评价的海量信息,为了识别消费者评价信息的情感倾向,及时掌握消费者的评价信息反馈,采用K-近邻(KNN)算法对消费者评价信息进行情感分类,但是该算法在文本分类过程中因文本特征向量的维度高,使得算法的时间复杂度和空间复杂度较高,计算的开销很大。针对这一问题,通过对获取信息的文本结构以及情感表达特点的分析,采用一种改进的KNN算法进行文本情感分类。在对消费者评价信息进行分类时,先由潜在语义分析算法对文本特征向量进行降维处理,然后利用加权KNN算法进行分类。实验结果表明,该方法在提高文本分类速度的同时保持了良好的分类效果。
2024-04-12 10:34:27 292KB
1
基于深度学习与词嵌入的情感分析系统设计与实现【毕业设计源码+答辩PPT+论文】 1、研究目的 针对文本进行句子和段落级的情感倾向性分析,利用算法来判断句子的情感色彩。研究的目标在于提高情感分析算法的准确性,不断学习,不断提高和优化算法。在实际数据集上的进行模型训练与调优,并对模型进行简单的封装和部署。 2、研究方法 主要使用基于深度学习的方法,数据集采用论文常用的 IMDB 数据集,旨在提高最终设计模型的准确性。本文尝试吸收其他深度学习模型优点,自己设计了 7 个深度学习模型。本文主要创新点在于,利用模型集成融合里的堆叠法的思想,实现了 3 个树形的传统机器学习算法与 7个深度学习模型的集成。 3、研究结论 在第一个IMDB数据集上经过AUC评分,计算重合的面积, 可以达到95.97%分,排名能达到前15%。 在第二个twitter数据集上经过F1 Score的评分方法,得到了 0.7131280389的分数,排名196/614,30%左右。
2024-04-10 23:58:02 3.79MB 毕业设计 深度学习 情感分析 论文
1
MEREX 安装marsyas 如果仅仅是运行二进制文件MER_EX,只需执行如下命令跳过本节内容。 sudo cp ./misc/libmarsyas.so /usr/lib/ 事先需要编译并安装,推荐版本0.4.5 可能需要的一些依赖 libmad0-dev qt4-dev-tools swig 配置marsyas $ cd marsyas-0.4.5 $ mkdir build $ cd build $ ccmake ../src ccmake 推荐配置 $ make #若出错则按提示安装相应依赖库 $ sudo make install 编译运行MER_EX MER_EX依赖训练文件mc_train.arff,需保持其目录结构: . |-- MER_EX `-- resources |-- mc_train.arff |-- minitunes.png `-
2024-04-08 19:35:34 2.86MB
1
现有的微博情感分析方法已经注意到了微博文本与图片之间的互补作用,但较少注意用户情感表达的差异和微博内容中除文字之外的特征,为此提出一种多特征融合的图文微博情感分析方法。首先构建文本情感分类模型,将对情感具有很好指示作用的内容特征和用户特征与微博句子进行融合, 然后构造了基于参数迁移和微调的图片情感分类模型。最后设计特征层和决策层融合的方法,将文本和图片情感分类模型进行融合。实验结果表明,内容特征和用户特征有效增强了模型捕捉情感语义的能力,并在多项性能指标上都取得了很好的效果, 构建的图文情感分类模型和融合方法可获得更好的性能。
2024-04-03 17:00:25 1.86MB 情感分析 多特征融合
1
本项目旨在通过爬取大量的评论数据,分析游客对潍坊和淄博的情感态度,从而为有意向去这两个城市旅游的人提供有价值的参考。通过对评论的情感分析,我们可以解游客对潍坊和淄博的整体评价以及他们在评论中表达的情感倾向。同时,我们还可以获取对这两个城市的客观评价、满意度水平和不满意之处的细节解。这些信息可以帮助旅游从业者、景点管理者和相关决策者更好地了解游客对潍坊和淄博旅游体验的感受,进一步改善景点的服务质量和提升游客的满意度。此外,这些评论数据的情感分析还可以为市场营销活动、旅游推广和舆情管理等方面的决策提供有价值的参考。
2024-03-22 11:53:07 29.59MB 爬虫 情感分析
1
基于python微博舆情分析可视化系统+爬虫+情感分析+Flask框架(包含文档+源码+部署教程) 本次就是在微博方面,通过建立微博情感分析可视化系统,来让用户可以通过简单的微博信息、评价有计算机来自动进行情感的判断,从而为判断出用户对于微博的情感好坏,能够通过对评价的统计分析来实现情感分析、舆情分析的功能。本次的开发是利用了Python技术和Flask框架来搭建网站,采用MySQL数据库存储数据,通过网络爬虫技术采集数据,最终搭建网页的形式展现。 项目截图 1、首页-----数据概况 在这里插入图片描述 2、舆情分析 在这里插入图片描述 3、中国地图----各省份IP分析 在这里插入图片描述 4、文章分析页面 在这里插入图片描述 5、评论分析页面 在这里插入图片描述 6、数据管理页面 在这里插入图片描述 7、微博舆情统计页面 在这里插入图片描述 8、爬虫数据采集页面 在这里插入图片描述 9、系统注册登录功能 在这里插入图片描述
2024-03-19 21:58:45 87.79MB python 爬虫 情感分析 舆情分析
1
1、修改模型路径(下载到你电脑上的路径) 2、文件 data 路径下,支持 Excel(需要预测的列名为 “sent”)。 3、运行 sentiment.py,生成结果在 result 文件夹。
2024-03-11 22:16:33 16KB 自然语言处理 文本情感分析
1
自然语言处理+Transformer+文本分类+情感分析 自然语言处理+YOLO+图像描述+图文生成 使用Transformer模型进行文本分类和情感分析的教程,介绍了Transformer模型的基本原理、结构和实现方法,以及如何使用Hugging Face的Transformers库和PyTorch框架来构建、训练和评估文本分类模型。本教程适合想要学习和应用Transformer模型的自然语言处理爱好者和开发者,可以帮助他们掌握Transformer模型的基本知识和技巧,以及如何利用Transformer模型进行文本分类和情感分析等任务。 使用Transformer模型进行文本分类和情感分析的教程,介绍了Transformer模型的基本原理、结构和实现方法,以及如何使用Hugging Face的Transformers库和PyTorch框架来构建、训练和评估文本分类模型。本教程适合想要学习和应用Transformer模型的自然语言处理爱好者和开发者,可以帮助他们掌握Transformer模型的基本知识和技巧,以及如何利用Transformer模型进行文本分类和情感分析等任务。使用Tr
2024-03-11 15:36:15 636B pytorch pytorch 自然语言处理 transformer
1
基于人脸表情和语音的双通道情感识别
2024-03-04 21:12:39 1.1MB 研究论文
1
语音情绪识别中文情感数据集
2024-02-05 22:09:26 44.74MB 语音识别 数据集 情感识别
1