Javascript中的深度学习,实现在浏览器中训练卷积神经网络
2023-05-09 22:03:06 946KB JavaScript开发-其它杂项
1
使用深度卷积网络的语义感知图像压缩 该代码是论文一部分,论文摘要在本页底部提供。 它包括三个部分: 生成感兴趣的多结构区域(MSROI)的代码(使用CNN模型。已提供了预训练的模型) 使用MSROI映射在语义上将图像压缩为JPEG的代码 训练CNN模型的代码(供1使用) 要求: 张量流 脾气暴躁的 大熊猫 Python PIL Python SKimage 有关详细的要求列表,请参阅requirements.txt 推荐: Imagemagick(用于更快的图像操作) VQMT(用于获取指标以比较图像) 目录 如何使用此代码? 生成地图 ``` python generate_map.py ``` 在“输出”目录中生成地图和覆盖文件。 如果收到此错误 ``` InvalidArgumentError (see above for traceb
1
针对以人为中心的井下视频监控模式存在持续时间受限、多场景同时监视困难、人工监视结果处理不及时等问题,提出了基于深度卷积神经网络的井下人员目标检测方法。首先将输入图片缩放为固定尺寸,通过深度卷积神经网络操作后形成特征图;然后,通过区域建议网络在特征图上形成建议区域,并将建议区域池化为统一大小,送入全连接层进行运算;最后,根据概率分数高低选择最好的建议区域,自动生成需要的目标检测框。测试结果表明,该方法可以成功检测出矿井工作人员的头部目标,准确率达到87.6%。
1
【车辆识别】基于卷积神经网络yolov3识别车辆和车辆速度附matlab代码
2023-04-19 20:58:10 1.18MB
1
本应用为“车牌检测与识别”,检测模型基于卷积神经网络训练,训练平台为yolov5s,车牌检测训练样本数据集大概有5000张,车牌识别训练样本数据集大概有2000张。本应用包括以下三部分:训练数据集(已经标注,可采用yolov5进行训练)、车牌检测模型文件和车牌字符识别模型文件(包括pt格式和onnx格式)、基于java swing构建的demo程序(基于此,可以扩展成WEB应用、微服务等)。
2023-04-18 10:03:13 318.23MB 目标检测 车牌检测 车牌识别 yolov5
1
基于Python卷积神经网络的动物识别系统源码,动物检测系统源码,宠物识别系统源码
语音质量评价matlab代码深度转换 深度卷积神经网络用于音乐源分离 该存储库包含用于数据生成,预处理和特征计算的类,可用于训练具有不适合内存的大型数据集的神经网络。 此外,您可以从中找到用于查询乐器声音样本的类。 在“示例”文件夹中,您可以找到上述类的使用案例,以了解音乐源分离的情况。 我们提供用于特征计算(STFT)和用于训练卷积神经网络以进行音乐源分离的代码:使用数据集iKala数据集唱歌语音源分离,使用DSD100数据集进行语音,低音,鼓分离,用于大鼓,单簧管,萨克斯风和小提琴的编码。 当原始分数可用时,后面的例子是使用RWC乐器声音数据库中的乐器样本训练神经网络的好例子。 在“评估”文件夹中,您可以找到基于Matlab的代码来评估分离质量。 为了训练神经网络,我们使用和。 我们使用已经训练有素的模型来完成不同任务,提供分离代码。 在examples / dsd100 / separate_dsd.py中将音乐分离为人声,贝斯,鼓和伴奏: python separate_dsd.py -i -o -m <path_to_model
2023-04-12 18:06:06 211KB 系统开源
1
卷积神经网络 Python tensorflow keras CNN VGG16 imagenet 预训练权重 人脸识别分类 训练集测试集评估准确率 maxpolling dropout jupyter notebook numpy pandas 数据分析 数据挖掘 深度学习 机器学习 人工智能
2023-04-11 20:51:39 47.9MB 深度学习 cnn 卷积神经网络 数据挖掘
1
基于ZYNQ实现了软硬协同的硬件加速器系统,实现对于LeNet-5卷积神经网络识别MNIST手写集的加速。PL端实现卷积层、池化层、全连接层的并行加速,PS端实现验证测试流程的控制。两者通过AXI总线连接,实现控制信识别结果的传递
2023-04-11 20:24:40 58.97MB fpga开发
1
介绍 基于深度卷积神经网络实现的人脸表情识别系统,系统程序由Keras, OpenCv, PyQt5的库实现,训练测试集采用fer2013表情库。 主要功能 (1)可以通过从本地图片导入系统,或者直接相机进行拍摄等方法对图片和视频进行处理并分析。 (2)可以切换模型对图片进行处理。 实现原理 (1)表情库的建立 目前,研究中比较常用的表情库主要有:美国CMU机器人研究所和心理学系共同建立的Cohn-Kanade AU-Coded Facial Expression Image Database(简称CKACFEID)人脸表情数据库;fer2013人脸数据集等等,这里我们的系统采用fer2013人脸数据集。 (2)表情识别: ①图像获取:通过摄像头等图像捕捉工具获取静态图像或动态图像序列。 ②图像预处理:图像的大小和灰度的归一化,头部姿态的矫正,图像分割等。(改善图像质量,消除噪声,统一图像灰度值及尺寸,为后序特征提取和分类 识别打好基础) (3)特征提取:将点阵转化成更高级别图像表述—如形状、运动、颜色、纹理、空间结构等,?在尽可能保证稳定性和识别率的前提下,对庞大的图像数据进 行降维
2023-04-11 16:16:23 12.01MB 软件/插件 数据集 keras opencv
1