由于电力线绝缘子的故障导致输电系统的故障,因此广泛使用基于空中平台的绝缘子检查系统。 绝缘子缺陷检测是针对航空图像中的复杂背景执行的,这提出了一个有趣但具有挑战性的问题。基于手工特征或浅层学习技术的传统方法只能在特定的检测条件下(例如何时)定位绝缘子并检测故障。在某些对象范围或特定照明条件下,具有足够的先验知识,背景干扰小。 本文讨论了使用航空图像自动检测绝缘子缺陷,准确定位从实际检查环境捕获的输入图像中出现的绝缘子缺陷的方法。我们提出了一种新颖的深度卷积神经网络(CNN)。级联体系结构,用于执行定位和检测。绝缘子中的缺陷。 级联网络使用基于区域提议网络的CNN将缺陷检查转换为两级目标检测问题。 为了解决实际检查环境中缺陷图像的稀缺性,还提出了一种数据增强方法,该方法包括以下四个操作:1)仿射变换; 2)仿射变换; 2)仿射变换。 2)绝缘子分割和背景融合; 3)高斯模糊; 4)亮度转换。 使用标准绝缘子数据集,缺陷检测精度和建议方法的召回率分别为0.91和0.96,并且可以成功检测到各种条件下的绝缘子缺陷。 实验结果表明,该方法符合绝缘子缺陷检测的鲁棒性和准确性要求。
2022-05-05 02:08:54 1.25MB Aerial image;convolutional neural network;data
1
主要为大家详细介绍了基于python神经卷积网络的人脸识别,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
2022-05-05 01:22:34 115KB python 神经卷积网络 人脸识别
1
针对大部分FPGA端上的卷积神经网络(CNN,convolutional neural network)加速器设计未能有效利用稀疏性的问题,从带宽和能量消耗方面考虑,提出了基于线性脉动阵列的2种改进的CNN计算优化方案。首先,卷积转化为矩阵相乘形式以利用稀疏性;其次,为解决传统的并行矩阵乘法器存在较大I/O需求的问题,采用线性脉动阵列改进设计;最后,对比分析了传统的并行矩阵乘法器和2种改进的线性脉动阵列用于CNN加速的利弊。理论证明及分析表明,与并行矩阵乘法器相比,2种改进的线性脉动阵列都充分利用了稀疏性,具有能量消耗少、I/O带宽占用少的优势。
1
针对传统深度图超分辨率重建算法需要人工提取特征、计算复杂度较高且不容易得到合适表示特征的问题, 提出一种基于卷积神经网络(CNN)的深度图超分辨率重建算法。该算法不需要提前对特定的任务从图像中提取具体的手工特征, 而是模拟人类的视觉系统对原始深度图进行层次化的抽象处理以自主地提取特征。该算法直接进行从低分辨率深度图到高分辨率深度图的映射学习。映射由7个卷积层和1个反卷积层联合实现。卷积操作学习丰富的图像特征, 而反卷积实现上采样重建高分辨率的深度图。Middlebury RGBD数据集的实验结果表明, 该模型得到的峰值信噪比(PSNR)较传统双三次插值算法平均提高了2.7235 dB, 均方根误差(RMSE)平均降低了0.098; 与经典CNN算法相比, PSNR平均提高了1.5244 dB, RMSE平均降低了0.043。
2022-05-04 21:14:18 4.17MB 图像处理 超分辨率 深度图 卷积神经
1
通过 CNN 等基于深度特征的人脸自发式微表情识别分类方法逐渐完善,相比于传统的特征提取方法更易满足应用实时性,针对微表情持续时间短、动作幅度细微,在多卷积层叠加会丢失图像中的细微信息的问题,为了完善细节信息,充分提取微表情细微特征,提出结合空洞卷积核及人脸自动校正算法,完善 CNN 网络特征提取过程,通过自动人脸矫正适应实际应用中的实时识别分类,在 CASME 及 CASMEⅡ微表情公开数据集上完成模型训练及测试,通过损失函数方案对比提高模型鲁棒性,CASME 中准确率为 70.16%,CASMEⅡ中准确率为 72.26%;实时识别帧率在 60fps。该方法能有效地提高微表情识别准确率,满足实时性要求,且具有较好的鲁棒性和泛化能力。
1
基于卷积神经网络的海上微动目标检测与分类方法
2022-05-04 14:06:33 768KB 综合资源
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85274948 【全部课程列表】 day01-机器学习概述、特征工程、机器学习算法 共127页.pptx day02-sklearn、knn、朴素贝叶斯、决策树、随机森林 共102页.pptx day03-线性回归、岭回归、逻辑回归、分类、聚类算法 共86页.pptx day04-Tensorflow基础与进阶 共74页.pptx day05-Tensorflow IO操作-队列和线程、文件读取、图片处理 共40页.pptx day06-Tensorflow、人工神经网络、卷积神经网络、图片识别 共65页.pptx day07-CIFAR图像分类 图像识别、分布式会话函数、分布式TensorFlow、推荐系统 共76页.pptx
2022-05-04 12:05:52 10.49MB 人工智能 机器学习 深度学习 文档资料
警告! 本项目中使用的体系结构不能很好地概括。 您可能要检查 。 这种修补技术可能会给您带来更好的效果。 完全卷积水印去除攻击 深度学习架构可从图像中删除透明的叠加层。 顶部:左侧为水印,中间为重建,右侧为算法预测的遮罩(从未使用文本或此图像训练过神经网络) 下: Pascal数据集图像重建。 当水印区域饱和时,重建趋向于产生灰色。 设计选择 在火车上,我生成了一个面具。 它是带有随机生成的参数(高度,宽度,不透明度,黑白,旋转)的矩形。 将遮罩应用于图片,并训练网络以查找添加的内容。 损失为abs(预测,image_perturbations)** 1/2。 它不是整个图片。 遮罩周围的
2022-05-04 08:48:28 703KB tensorflow densenet watermark inpainting
1
一维DCNN用于轴承故障诊断,仿真数据集为CWRU(凯西私储大学的公开轴承数据集) 轴承故障诊断时机械状态监测的热门研究方向,其算法的核心在于信号特征提取与模式分类两个部分。在轴承故障诊断领域,常见的特征提取算法有快速傅里叶变化,小波变换,经验模式分解以及信号的统计学特征等,常见的模式分类算法有支持向量机,BP 神经网络(也称为多层感知器),贝叶斯分类器以及最近邻分类器等。当下轴承故障诊断的研究热点是可以归结为 3 类:寻找更好的特征表达;寻找最适合的特征表达以及分类器的组合;以及发明新的传感器。
2022-05-03 19:03:48 3.63MB 文档资料 人工智能 神经网络 深度学习
卷积神经网络实现手写字体识别
2022-05-03 17:06:26 17.37MB cnn 综合资源 神经网络 深度学习