论文提出了一种基于跨尺度动态卷积的YOLO融合网络(CDC-YOLOFusion),用于可见光-红外目标检测。该方法通过跨模态数据交换(CDS)模块生成混合模态图像,增强模型对跨模态相关性的理解。核心创新是跨尺度动态卷积融合(CDCF)模块,该模块利用跨尺度特征增强和双动态卷积融合机制,自适应地提取与数据分布相关的双模态特征。CDCF在跨模态核交互损失(KI Loss)的监督下,使卷积核同时关注模态共同特征和独特特征。实验表明,CDC-YOLOFusion在VEDAI、FLIR和LLVIP三个数据集上均达到最先进性能,mAP最高提升3%,且参数量和推理时间平衡。消融实验验证了CDS和CDCF模块的有效性,其中CDS通过局部区域交换策略提升模型鲁棒性,而CDCF的多尺度特征聚合和动态卷积机制显著改善特征融合效果。 CDC-YOLOFusion是一种先进的跨模态目标检测网络,它整合了可见光和红外图像数据,提供了更全面的检测能力。该网络的核心创新是跨尺度动态卷积融合(CDCF)模块,它通过跨尺度特征增强和动态卷积机制自适应地提取特征,这些特征与数据分布密切相关,并能够同时关注模态间的共同特征和独特特征。CDCF模块在跨模态核交互损失(KI Loss)的指导下工作,有效监督卷积核的行为,使其在特征提取时更为精确。 在数据预处理阶段,CDC-YOLOFusion采用了跨模态数据交换(CDS)模块,该模块通过生成混合模态图像来增强模型对跨模态相关性的理解,进一步提升了模型的鲁棒性。通过局部区域交换策略,CDS模块提升了模型在不同模态下的性能。 在实际应用中,CDC-YOLOFusion在网络架构上实现了mAP的最高提升3%,在性能提升的同时,它还保持了参数量和推理时间的平衡。这一点在实际应用中尤为关键,因为它保证了实时目标检测的可行性。此外,网络的消融实验详细验证了CDS和CDCF模块的有效性,显示出这些模块对于改善特征融合和提高模型性能的重要性。 CDC-YOLOFusion网络的设计理念和性能提升,证明了在跨模态数据处理领域,动态卷积技术与融合网络相结合,可以显著提高目标检测的准确性和鲁棒性。这种模型设计为解决实际中的多模态目标检测问题提供了新的视角和方法论。
2026-01-19 21:38:27 6KB
1
新能源汽车充电插口类型识别检测数据集是一个特别针对新能源汽车充电接口的视觉识别任务设计的标注数据集,它包含了2486张经过准确标注的图片,分为三个不同的类别。这些数据是用于训练和评估机器学习模型的,尤其是在物体检测和识别领域中,用于提高对新能源汽车充电插口的自动识别能力。 该数据集采用了Pascal VOC格式和YOLO格式两种标注格式。Pascal VOC格式通过XML文件记录了图片中每个目标物体的位置和类别信息,而YOLO格式则通过文本文件记录了这些信息,二者结合使用为研究人员提供了灵活性和便利性。标注工具是labelImg,它被广泛应用于目标检测任务中,以画矩形框的方式完成对特定物体的标注。 数据集中的图片数量、标注数量和类别数量均达到2486,表明了该数据集的规模较大,能够为机器学习模型的训练提供丰富的数据支持。数据集包含了三种类别:“CCS2_Type2”、“Type1”和“charging-pocket”,分别代表了不同类型的新能汽车充电插口。每个类别都有一定数量的标注框,总框数达到2486,这为模型提供了足够的训练样本。 需要注意的是,数据集中有一部分图片是原图,而另一部分是增强图片。这表明数据集还可能采用了图像增强技术,以增强模型对不同光照、角度和背景条件下的物体检测能力。数据集不包含分割路径的txt文件,而是仅包含jpg图片以及对应的VOC格式xml文件和YOLO格式txt文件。 虽然数据集提供了大量的标注数据,但是该文档指出,数据集不对训练的模型或权重文件的精度作任何保证。这意味着,尽管数据集是准确且合理标注的,但是模型的表现还需要依赖于算法的选择、模型的设计、训练过程以及其他多种因素。 为了更好地使用这个数据集,研究人员和开发者可以对数据进行预处理,如数据增强、标准化、归一化等,以适应不同的深度学习框架和模型。在训练之前,还需要对数据集进行随机划分,分为训练集、验证集和测试集,从而在训练过程中监测模型的表现,并在最终评估模型的性能。 对于该数据集的使用,研究人员应遵守相关的版权声明和使用说明,正确引用数据集,如果对数据集进行进一步的增强或修改,应遵守相应的许可协议。此外,研究人员还应确保在应用模型时遵守相应的数据保护法规和隐私政策,尤其是在处理涉及个人识别信息的数据时。 新能源汽车充电插口类型识别检测数据集VOC+YOLO格式为研究者们提供了一个高质量、大量级的数据资源,有助于推动新能源汽车充电插口识别技术的发展和创新,具有重要的科研价值和应用前景。
2026-01-19 16:38:56 3.02MB 数据集
1
该数据集为管道漏水、泄漏及破损检测的VOC+YOLO格式数据集,包含2614张图片,分为4个类别:crack、leak、no leak和water。数据集提供了对应的VOC格式xml文件和YOLO格式txt文件,标注总框数为2690。使用labelImg工具进行标注,标注规则为对类别画矩形框。数据集包含部分增强图片,下载时需仔细查看。特别声明:数据集仅提供准确且合理的标注,不对训练的模型或权重文件精度作任何保证。下载地址已提供。 管道漏水检测数据集是专门为解决城市基础设施维护中的管道泄漏问题而设计的。数据集以VOC(Pascal Visual Object Classes)和YOLO(You Only Look Once)两种格式提供,旨在帮助研究人员和开发者利用计算机视觉技术提高对管道损坏检测的准确性。数据集共包含2614张图像,这些图像被细致地分为四个类别:裂缝(crack)、泄漏(leak)、无泄漏(no leak)和水(water)。这种分类方法有助于更精确地识别管道状态,从而为及时维修提供科学依据。 每张图像都配有对应的VOC格式的XML文件,这些文件详细记录了图像中每个目标的类别以及位置信息。此外,还提供了YOLO格式的TXT文件,用于YOLO系列算法的训练和识别。标注工作是通过labelImg工具完成的,标注方法是在目标周围画出矩形框来标记出对应的类别。这种标注方式便于计算机理解视觉内容,并能高效地在训练数据上进行学习。 数据集中包含了经过增强处理的图像,这是为了增加数据的多样性和复杂性,从而提高模型的泛化能力。使用经过增强的数据集训练模型,可以在不同条件下更好地识别和定位管道泄漏情况。增强图片可以帮助算法学习在噪声、光照变化或视觉障碍等不利条件下的稳健性能。 虽然数据集的提供方已经确保了标注的准确性和合理性,但他们明确指出不对由此数据集训练出的模型或权重文件的精度进行任何保证。这一声明提醒使用者,即使数据集本身质量高,模型的性能仍然取决于训练过程、算法选择、参数调优等多种因素。 数据集的使用旨在推动相关领域研究,促进智能监控技术在城市基础设施管理中的应用。随着城市化水平的提高,对地下管网系统的依赖越来越大,因此,对于这类系统实施有效监控和维护显得尤为重要。 数据集的下载地址已经提供,方便用户获取和使用。用户在下载时应仔细查看相关说明,以确保正确使用数据集,并取得预期的研究成果。
2026-01-19 12:36:38 5KB 软件开发 源码
1
深度学习疲劳检测数据集是一种专门用于训练和测试深度学习模型以识别和评估驾驶员疲劳状态的数据集合。这种数据集对于确保交通安全和减少交通事故具有重要意义。数据集被标注为yolo格式,yolo(You Only Look Once)是一种流行的实时对象检测系统,因其速度快、准确率高而广泛应用于各种视觉检测任务中。该数据集被分为两个主要类别:疲劳和不疲劳。每一张图像都被精确标注,以便机器学习模型能够区分驾驶员是否处于疲劳状态。训练集和验证集的划分是为了使模型能够先从训练集中学习特征,然后在验证集上进行测试,以评估其泛化能力。训练集包含2793张图像,这些图像被用于模型的训练过程,使得模型能够学习到疲劳状态的特征和表现;而验证集包含1045张图像,用于在模型训练完成后评估其性能。数据集中的每一张图像都附带有对应的标注文件,这些文件以yolo格式提供,其中详细描述了图像中的疲劳特征位置,包括其在图像中的坐标位置以及类别信息。 深度学习疲劳检测数据集是机器视觉领域的重要工具,机器视觉是深度学习研究的前沿方向之一。利用深度学习进行疲劳检测是通过构建复杂的神经网络模型,来模仿人类视觉系统,使计算机能够从图像或视频中识别、处理和理解信息。数据集中的图像通过yolo格式的标注,为模型提供了必要的监督信息,使其能够自动地识别出驾驶员的疲劳状态。在交通安全领域,利用深度学习技术检测疲劳驾驶,有助于提升道路安全性,减少因疲劳驾驶造成的交通事故。 机器视觉与深度学习的结合,不仅限于疲劳检测,还包括其他许多应用,如人脸识别、自动驾驶、医疗影像分析、工业检测等。yolo格式的标注数据集为这些应用提供了高质量的训练材料,使得深度学习模型能够在各种场景下都能够实现高精度的视觉识别任务。由于yolo格式的简单性和高效性,使得它成为构建实时视觉检测系统的首选标注方式。 此外,随着深度学习技术的不断发展和优化,对于大规模高质量标注数据集的需求日益增长。一个精心设计并广泛使用的疲劳检测数据集,对于推动相关研究和应用的发展具有重要价值。未来,随着更多的数据被收集和标注,以及更先进的深度学习算法的出现,疲劳检测系统将更加精准可靠,为公共安全做出更大贡献。
2026-01-19 11:30:54 336.59MB 深度学习 机器视觉
1
图像分割任务 1.添加分割头:可以在 DINOv3 输出的基础上增加一个解码器或直接添加几个卷积层,构建出适合于分割任务的结构,如 U-Net 或者 FPN。 2.训练分割头:对新增加的分割头进行训练,而保持骨干网络的参数固定。 分割训练示例程序 DINOv3是一个深度学习模型,它在计算机视觉领域中被广泛使用,特别是在图像处理的下游任务中,例如图像分类、目标检测和图像分割等任务。在这些任务中,DINOv3通常被用作特征提取的骨干网络,从而有效地提供对复杂图像数据的深入理解。 当涉及到图像分割任务时,DINOv3可以发挥重要作用。图像分割是计算机视觉中一种将图像分割成多个部分或对象的技术,目的是简化或改变图像的表示形式,使得图像中每个像素都能被赋予一个标签,这些标签表示像素属于特定的对象类别或区域。 为了使用DINOv3进行图像分割,通常需要在DINOv3的输出基础上添加一个解码器,或者直接通过添加几个卷积层来构建适合分割任务的网络结构。这种方法可以被看作是在DINOv3网络上增加了一个“分割头”。常见的结构如U-Net或者FPN(Feature Pyramid Network)等,它们能够有效地将从DINOv3骨干网络提取的高级特征进行进一步的处理,生成图像的像素级分类。 训练分割头涉及的步骤是在保持骨干网络参数不变的情况下,单独对新增加的分割头进行训练。这样可以确保已经训练好的DINOv3骨干网络的特征提取能力不会因训练分割头而受到影响。在训练过程中,一般需要大量的标注数据作为监督信息,以确保分割模型能够准确地识别并分割图像中的不同区域。 分割训练示例程序可能包括了数据加载、预处理、模型定义、损失函数计算、优化器选择、训练循环和验证等步骤。在此过程中,DINOv3骨干网络及其分割头的参数会被调整以最小化预测与真实标签之间的差异。随着训练的进行,分割模型的性能将会逐步提高,直到满足预定的评价标准。 分割模型的最终目标是在不同的应用场景中都能够准确地对图像进行分割,例如在医学图像分析中识别不同类型的组织,在自动驾驶中检测道路边界和行人,在卫星图像中识别建筑物和植被等。通过使用DINOv3,研究人员和开发人员可以构建出能够处理复杂视觉任务的强大模型。 此外,DINOv3在适应不同的图像分割任务方面显示出灵活性。例如,它可以被调整为处理不同的图像尺寸、类别数量以及不同的分割精度要求。通过微调网络结构和训练策略,可以优化DINOv3以适应特定应用的需求。 DINOv3作为一个强大的特征提取骨干网络,在图像分割等下游任务中表现出色。通过在其基础上增加分割头,并进行适应性训练,可以有效地解决各种图像分割问题,大大扩展了DINOv3的应用范围。
2026-01-19 10:45:10 16KB
1
在居家安防监控领域,基于实时视频的移动检测,发现监控环境中人、宠物、包裹等的出现,并且能实时地将检测结果通知给身处任何地方的用户是其重要的应用场景之一。但在这一场景的技术实现中面临如下的挑战:一是基于摄像头的视频检测通知,存在大量由于风、雨、移动的车等并非用户关注的事件误报,严重影响用户的使用体验。二是实现这一方案涉及的技术领域与复杂度很高,如设备端事件检测和触发、视频编解码处理、视频存储、机器视觉等,需要团队具备较强的技术和专业能力。本实验将以最小化原型,体现由Raspberry Pi加摄像头作为安防设备端,并使用Amazon KVS和Amazon Rekognition Streaming Video Events来解决上述挑战,实现实时智能视觉识别。 Amazon 提供物联网 (IoT) 服务和解决方案来连接和管理数十亿台设备。连接、存储和分析工业、家居消费、商业和汽车业工作负载的 IoT 数据。 使用最为完备的 IoT 服务套组加速创新,借助 Amazon IoT 不断扩展、快速行动,并节省成本。从安全设备连接到管理、存储和分析,Amazon IoT 能够为您提供广泛而深入
2026-01-18 23:42:55 29.64MB AIOT 实验手册
1
本文详细介绍了如何使用YOLOv5深度学习模型训练排水管道缺陷检测数据集,包含16种缺陷类别如支管暗接、变形、沉积等,并依据CJJ181技术规程划分缺陷等级。数据集包含12,013张标注图像,采用LabelMe工具标注。文章提供了从数据准备、模型训练到可视化评估及推理的完整流程,包括环境配置、数据转换脚本示例、YOLOv5训练命令及推理步骤。此外,还介绍了如何解析推理结果和自定义代码进行推理,为排水管道缺陷检测任务提供了全面的技术指导。 深度学习技术是当前图像处理和目标检测领域的重要进展之一,特别是在工业检测中,其应用已经越来越广泛。YOLO(You Only Look Once)作为其中一种较为出色的实时目标检测系统,凭借其准确性和速度上的优势,在各类目标检测任务中备受青睐。特别是YOLOv5版本的推出,进一步提升了检测的精确度和模型的运行效率。排水管道缺陷检测作为保障城市公共设施正常运作的一个关键任务,利用深度学习模型进行自动化检测,能够大大提高工作效率和检测精度。 排水管道缺陷的类型多种多样,包括但不限于支管暗接、管道变形、沉积物堵塞等。对这些缺陷的检测需要对图像中的细微差别有极高的识别能力。为此,需要收集大量的标注图像来训练模型,以便模型能够识别和分类出不同种类的管道缺陷。在本项目中,数据集包含12,013张标注图像,每张图像都使用LabelMe工具进行了精确标注,为模型提供了丰富的学习样本。 在训练过程中,遵循了CJJ181技术规程对管道缺陷等级的划分,这使得模型不仅能够识别出缺陷类型,还能根据缺陷的严重程度进行等级分类。这种分类方法对于后续的维修决策和工程规划具有实际指导意义。 文章详细描述了整个排水管道缺陷检测项目的关键步骤,从环境配置到数据准备、模型训练、评估以及推理。环境配置确保了深度学习模型能够顺利运行;数据准备阶段需要将数据集转换成模型可识别的格式,并且进行了适当的增强,以增加数据的多样性,提高模型的泛化能力;模型训练部分详细介绍了使用YOLOv5进行训练的过程,包括训练命令的使用和训练参数的设定;评估阶段则通过可视化工具,对模型的检测效果进行评估,确保模型的准确性和可靠性;推理步骤和结果解析部分提供了模型推理的详细过程,并且通过自定义代码展示了如何根据实际需求进行推理。 文章不仅提供了技术实现的步骤,更注重技术背后的理念和思维,比如如何合理划分数据集、如何调整模型参数以获得更好的训练效果等,这些都是实际工程应用中需要重点关注的问题。文章通过实例演示了这些技术细节,旨在为排水管道缺陷检测任务提供全面的技术指导,使得这项技术能够更好地服务于工程实践。 此外,作者还强调了模型部署的重要性和后续开发的可能方向。如何将训练好的模型部署到实际的生产环境中,以及如何根据实际检测中遇到的新问题,继续优化模型,这都是实践中需要考虑的问题。文章的这部分内容,为项目的进一步发展指明了方向。 该项目不仅在技术实现层面具有较高的参考价值,更重要的是,它展示了如何将深度学习技术应用于实际工业检测任务中,为后续类似项目提供了宝贵的经验和参考。通过该项目的实施,可以预见,未来排水管道的缺陷检测将越来越自动化、智能化,为城市基础设施的维护和管理带来革命性的变化。
2026-01-18 22:05:46 542B 深度学习 目标检测 YOLOv5
1
人工智能在农业领域的应用越来越广泛,特别是在害虫检测这一细分领域。本资源便是围绕这一需求精心打造,具体而言,它专注于利用深度学习技术中的yolov5模型进行害虫图像的识别与检测。yolov5(You Only Look Once version 5)是一种先进的实时对象检测系统,以其高速度和高准确率著称。在农业害虫检测的场景中,它的应用可以极大地提高检测的效率和准确性,从而帮助农民及时发现并处理害虫问题,减少作物损失。 本资源包括了一系列经过精心挑选的害虫图像数据集,这些数据集经过预处理,适用于yolov5模型的训练。资源的设计初衷是为那些从事AI害虫检测研究的学者、开发者或农业工作者提供便利,使得他们无需从零开始收集和处理数据,能够迅速上手并开始训练自己的模型。这对于推动AI技术在害虫检测领域的应用,以及智能农业的进一步发展具有重要的促进作用。 在yolov5模型的训练过程中,会用到诸多深度学习的概念和技术。例如,卷积神经网络(CNN)是深度学习中处理图像数据的核心技术之一,它通过模拟人类视觉系统的工作方式,能够自动提取图像中的特征,并对特征进行层次化的学习和表示。这一技术是yolov5能够实现快速准确害虫检测的关键。 此外,yolov5的训练还包括了数据增强、模型优化、损失函数的选择和反向传播等重要环节。数据增强是指通过旋转、缩放、裁剪等方式人为地扩充数据集,这有助于模型更全面地学习害虫在不同条件下的表现,从而提高模型的泛化能力。模型优化则是指通过调整模型参数来提升模型性能的过程,这可能包括更改网络结构、调整学习率等。损失函数是衡量模型预测值与真实值之间差异的数学表达,优化损失函数能够帮助模型更快地收敛到最优解。反向传播是深度学习中用于计算梯度,进而更新模型参数的重要算法。 除了这些技术层面的内容,本资源还涉及到了模型部署方面的知识。当yolov5模型经过训练和验证,证明其在害虫检测任务上具备良好的性能之后,下一步便是将模型部署到实际的应用场景中。这可能涉及到将模型集成到移动设备、无人机或者农业监控系统中,使其能够实时地对田间情况进行分析,及时发现害虫,从而为精准施药或采取其他防治措施提供依据。 本资源通过提供经过预处理的害虫数据集,结合yolov5模型的强大性能,以及配套的技术说明和模型部署指南,为研究者和从业者提供了一条快捷高效的害虫检测AI模型开发之路。这不仅有助于提升农业生产效率,也体现了人工智能技术在解决实际问题中的巨大潜力和价值。
2026-01-18 21:07:43 783.8MB 人工智能 yolov5
1
嵌入式系统开发_基于STM32单片机与WiFi物联网技术_集成MQ-5燃气传感器_DS18B20温度传感器_MO-7烟雾传感器_红外对管入侵检测_液晶显示与蜂鸣器报警_手机远程监控.zip前端工程化实战项目 在当代科技迅猛发展的背景下,物联网技术已广泛应用于各个领域,从家居安全到工业控制,其便捷性与高效性不断推动着技术革新的步伐。本项目集成了STM32单片机与WiFi物联网技术,并融合了多种传感器与报警设备,旨在构建一个完整的智能家居安全系统。通过MQ-5燃气传感器、DS18B20温度传感器以及MO-7烟雾传感器,系统能够实时监控环境中的燃气浓度、温度变化和烟雾浓度。红外对管入侵检测技术则可以感应非法闯入行为,提升家居的安全级别。此外,液晶显示屏和蜂鸣器报警的设计,为用户提供直观的警告信息和听觉警报。最关键的是,通过手机远程监控功能,用户可以随时随地通过手机APP查看家中安全状况,并作出相应的远程操作。 在技术层面,本项目基于STM32单片机进行开发。STM32系列单片机以其高性能、低功耗、丰富的外设接口以及低成本等优势,在嵌入式系统领域内占据了重要的地位。它支持多种通信协议,包括WiFi通信,这使得其非常适合用于构建物联网应用。本项目的WiFi通信功能允许设备连接至家庭网络,并通过互联网与用户的手机或其他智能设备进行数据交换。 在实际应用中,系统通过传感器收集的数据首先由STM32单片机处理,然后通过WiFi模块发送至服务器或直接推送到用户的手机APP上。如果检测到异常情况,如燃气泄漏、温度异常上升或者有入侵行为,系统会通过液晶显示屏显示警告信息,并通过蜂鸣器发出声音警报。同时,手机APP将接收到推送通知,用户可以立即得知家中状况并采取相应的措施。 项目的成功实施,需要具备一定的电子电路知识、编程能力以及网络通信技术。开发者需要熟练掌握STM32单片机的编程,了解WiFi模块的配置与使用,并且能够处理各种传感器的信号。此外,对手机APP开发也应有一定的了解,以便于实现远程监控功能。 项目文件中包含的“附赠资源.docx”文档可能提供了项目的详细说明、电路图、必要的代码以及使用教程等,方便用户深入了解和操作;“说明文件.txt”则可能是一个简单的项目介绍或者快速入门指南;而“stm32_Home_Security-master”目录则极有可能包含了项目的源代码、相关配置文件以及可能需要的开发工具链或库文件。通过这些文件的组合使用,用户将能够快速地搭建和部署整个智能家居安全系统。 嵌入式系统开发基于STM32单片机与WiFi物联网技术,集成多种传感器与报警装置,构建了一个综合性的智能家居安全解决方案。该项目不仅提升了居住的安全性,也为物联网技术在家庭安全领域的应用提供了新的思路和范例。
2026-01-17 16:15:36 53.62MB
1
数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):5029 标注数量(xml文件个数):5029 标注数量(txt文件个数):5029 标注类别数:8 标注类别名称:["Drain hole impairment","Lightning Strike","OIL LEAKAGE","PU-tape","Paint","Surface Crack","dirt","le-erosion"] 更多信息:https://blog.csdn.net/FL1623863129/article/details/141472971
2026-01-16 17:33:25 154.5MB 数据集
1