内含mnist数据集和训练代码和qt界面代码 可直接python运行,十分方便。 可参考博客介绍:https://blog.csdn.net/qq_34904125/article/details/124832709 本代码基于python实现,深度学习训练mnsit数据集,pytorch的框架,也可以改成tensorflow进行训练。
2022-05-18 12:06:14 31.13MB python qt 源码软件 开发语言
这是MNIST手写数字数据集的jpg格式,包含60000张训练图片和10000张测试图片
2022-05-10 10:07:06 61.79MB 深度学习
1
VGG作为流行的几个模型之一,训练图形数据效果不错,在mnist数据集是常用的入门集数据,VGG层数非常多,如果严格按照规范来实现,并用来训练mnist数据集,会出现各种问题,如,经过16层卷积后,28*28*1的图片几乎无法进行。 先介绍下VGG ILSVRC 2014的第二名是Karen Simonyan和 Andrew Zisserman实现的卷积神经网络,现在称其为VGGNet。它主要的贡献是展示出网络的深度是算法优良性能的关键部分。 他们最好的网络包含了16个卷积/全连接层。网络的结构非常一致,从头到尾全部使用的是3×3的卷积和2×2的汇聚。他们的预训练模型是可以在网络上获得并在Ca
2022-05-10 07:13:31 58KB ens fl flow
1
时尚MNIST 简单的时尚配饰使用Tensorflow keras库中的Fashion MNIST数据集对预测进行建模。 安装和使用。 该项目使用pipenv进行依赖项管理。 您需要确保在系统上安装了pipenv 。 这是安装依赖项并开始使用的方法。 使用pipenv sync -d安装它 完成后,生成一个shell来运行文件: pipenv shell 完成后,您可以运行任何文件,并进行测试。 添加您自己的图像。 有时,要尝试对新图像进行predictions.py并使用predictions.py测试,则需要添加它们。 这是操作方法。 将图像添加到images文件夹中。 如果要测试它们,请转至src/predictions.py ,然后将其替换为您的图像名称。 看起来像这样: np.array([get_image("...") 。 由Sunrit Jana制造,<3
2022-05-04 18:06:23 2.39MB JupyterNotebook
1
本资源与本人CSDN文章《全站最详细的Python numpy 搭建全连接神经网络模型教程(理论计算+代码实现)(不止能预测手写数字数据,准确率93.21%)》相配套。里面包含6万条原始手写数据、本人编写的全连接神经网络模型程序,以及一个训练好的准确率为93.21%的全连接神经网络模型。程序的调用建议参考文章的说明。
深度学习训练神经网络模型时使用的MNIST数据集,来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据
2022-04-29 17:34:47 21.31MB 卷积神经网络
1
手写识别(HandWriting Recognition)是指将在手写设备上书写时产生的有序轨迹信息化转化为汉字内码的过程,实际上是手写轨迹的坐标序列到汉字的内码的一个映射过程,是人机交互最自然、最方便的手段之一。直接可用
1
这个是tensorflow的mnist数据集,有时候官网给的地址由于各种原因上不去,可以从这里下载。 这个是tensorflow的mnist数据集,有时候官网给的地址由于各种原因上不去,可以从这里下载。 这个是tensorflow的mnist数据集,有时候官网给的地址由于各种原因上不去,可以从这里下载。
2022-04-25 10:59:31 11.06MB tensorflow
1
机器学习课程#MNIST数据集上的卷积神经网络实验,基于pytorch。包括:数据可视化、train训练代码与test测试代码。 都是包装好的代码,做实验只要修改其中指定行的代码即可。内置【说明文件.md】来帮助你更快地了解!!!
2022-04-23 13:05:10 33.63MB 机器学习 cnn 人工智能 神经网络