python实现机器学习K-means聚类算法.zip对数据进行聚类并绘图。原理 ​ K-means算法属于八大经典的机器学习算法中的其中一种,是一种无监督的聚类算法。其中无监督是机器学习领域中一个专业名词,和有监督是相对的,两者最本质的区别就在于研究的样本是否包含标签。比如猫狗分类这个问题中,猫和狗就是标签。对于聚类,其实是和分类相对应的,其中分类就是之有标签的。而聚类则是只没有标签的,我们需要将这些无标签的数据,按照各自的属性将他们会聚成不同的类别,从而将他们区分开。 ​ 在k-means算法中,存在着质心和簇。在进行算法之前,我们需要人工的指定将数据分为K个簇,并随便选取K个质心。就拿认知实习学习中的例子举例,假如我们又8个数据,分别为a1-a8,我们需要将这八个数据分为三个簇,也就是说k=3。这是我们就需要在a1-a8中随机选取三个数据点作为质心我们将质心记为b11,b12,b13。确定了质心后,我们需要计算a1-a8和三个质心的距离,并将距离最短的归为一类。比如a5到b11距离为2,到b12距离为3,到b13距离为1,那么就将a5和质心b13归为同一个簇。如此一次计算8个数
欢迎。 该存储库包含基于Matlab的“ GBK-means聚类算法的实现:基于讨价还价博弈的K-means算法的改进”。 在该存储库中,提供了GBK-means聚类算法的源代码,并将其与两种众所周知的聚类算法K-means和Fuzzy cmeans进行比较。 关于通用有效性指标,已经对人工和现实世界的数据集进行了比较。 提出的方法是一种新的机制,用于解决集群中心相互竞争以吸引最多数量的相似对象或实体进入其集群的集群分析问题。
2022-12-11 16:43:24 16KB matlab
1
C语言实现了K均值算法,包含两个文件,一个是纯C++语言版本的,可直接运行,另一个是C和Matlab混合版本,图形化运行结果,能够以不同颜色标识不同的聚类,用的是matlab引擎,代码已经写好,只是需要用户自己在集成开发环境如Visual Stuio中配置一些引用matlab的环境,具体配置可参考网上的matlab和C引擎混合。
2022-12-08 23:18:46 3KB K-means C语言 Matlab引擎 GUI
1
资源是csv文件,大家可以直接使用
2022-12-07 13:26:50 50KB 机器学习 数据挖掘
1
K-Means++算法代码实现所用到的数据集
2022-12-06 11:26:06 59KB 数据集
1
k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其步骤是,预将数据分为K组,则随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小
2022-12-02 20:40:54 2KB matlab
1
k-means聚类算法
2022-11-29 14:32:15 4KB python
1
Python实现K-Means聚类后的二维可视化,使用的是生成数据,编译器为jupyter notebook 简单便捷,易于理解 使用库:pandas ,numpy ,sklearn,matplotlib,seaborn
2022-11-23 12:25:32 155KB 可视化 kmeans算法
1
Python实现K-Means聚类后的三维可视化,使用的是生成数据,编译器为jupyter notebook 简单便捷,易于理解 使用库:pandas ,numpy ,sklearn,matplotlib,mpl_toolkits
2022-11-23 12:25:31 185KB 可视化 kmeans算法
1
快速mex K-means聚类算法,可进行K-mean ++初始化 (mex-interface 修改自原始 yael 包 https://gforge.inria.fr/projects/yael) - 接受单/双精度输入 - 支持 BLAS/OpenMP 进行多核计算 请运行 mexme_kmeans.m 来编译 mex 文件(确保已经完成了 mex -setup 至少一个) 运行演示“test_yael_kmeans.m”
2022-11-22 17:15:08 1.42MB matlab
1