随着现代船舶工业的发展,大型定距螺旋桨作为舰船推进器的关键部件,在加工精度和表面质量上要求越来越高。传统的加工工艺由于加工周期长、质量差等缺点已不能满足现代工业的需求,而多轴数控加工技术以其高精度、高效率的优点逐渐成为研究和应用的热点。 在研究大型定距螺旋桨的多轴数控加工刀具轨迹规划中,黄科撰写的硕士学位论文提出了针对定距螺旋桨叶片的加工工艺和刀具路径生成的问题。论文提出了一种基于定距螺旋桨加工特征划分的数控加工工艺方案。这项工艺方案通过分析螺旋桨曲面的几何特性,并结合特定的大型数控机床设备,成功地解决了大型定距螺旋桨加工余量不均匀、桨叶众多、重叠区域大以及安装定位困难等难题。通过在镇江螺旋桨厂的实际加工验证,该方案显著提高了加工效率和产品质量。 针对螺旋桨加工过程中可能出现的干涉碰撞问题,研究团队开发了基于分离轴理论的干涉检查算法。该算法通过构建刀具和工件的OBB(边界包围盒)包容盒,并采用八叉树结构对工件进行三维空间剖分,利用分离轴理论判断刀具与工件八叉树叶子节点间的干涉情况,从而有效找出干涉的三角片。这种算法不仅能够应用于定距螺旋桨区域的划分和机床仿真,还能生成无干涉的刀具路径,对于保证加工精度和安全具有重要意义。 在刀具路径生成方面,论文特别研究了环形刀无干涉刀具路径算法。通过在OBB包容盒搜索到的三角片基础上,利用解析方法计算刀具沿轴向方向的抬刀距离。对于特定情况下的平底刀具,同样给出了抬刀距离的计算方法。这些研究成果对于实现复杂曲面的精确加工具有重要的指导意义。 研究团队利用ACIS、HOOPS平台,VC为编程工具,BCG为界面支持,开发了定距螺旋桨数控加工编程原型系统。该系统能够实现大型定距螺旋桨的区域划分和刀具路径生成,并已在实际生产中得到了应用和验证。通过这些努力,定距螺旋桨的多轴数控加工技术得到了显著提升,为我国船舶工业的发展提供了重要的技术支撑。 本研究对于推动我国在大型定距螺旋桨的多轴数控加工技术领域的进步,缩短与国际先进水平之间的差距,提高船舶推进器的制造质量和效率,具有重大的理论意义和实际应用价值。随着多轴数控加工技术的进一步发展和完善,未来在类似复杂零部件的制造中将展现出更加广泛的应用前景。
2025-10-29 22:12:14 1.98MB
1
自由曲面加工在现代制造业中扮演着极其重要的角色,尤其在军事、汽车、模具设计等行业中应用广泛。传统的多轴机床加工通常采用单一的走刀路径,这在处理自由曲面时往往不易达到理想的效果。为了提高加工质量和效率,人们提出了多种刀具轨迹规划算法,其中包括参数线法、多面体法、截面法、等残留高度法和空间填充曲线法等。 然而,这些算法往往没有考虑到曲面的局部特征,从而导致在复杂曲面加工时效率低下和表面质量不佳。为此,本文作者李万军提出了一种新的刀具轨迹规划算法,该算法可以自适应地将曲面划分为多个区域,并生成合理且连续的多样式走刀轨迹。 该算法的核心在于两个方面:首先是通过曲率特征对曲面进行自适应分区;其次是引入权因子函数来改变Hilbert曲线的走向,以此生成各个区域内最优的走刀轨迹。Hilbert曲线是一种空间填充曲线,能够在连续的线性轨迹中覆盖整个曲面,这对于保持加工过程中的连续性至关重要。 本算法的优点在于能够整体缩短切削刀具路径,提高加工稳定性。由于整个曲面的走刀轨迹是连续无抬刀的,因此可以有效避免多次抬刀和接刀痕的出现,从而提高表面加工质量。 在算法中,曲面被自适应划分为若干区域,每个区域根据自身的曲率特征选择合适的走刀方式。这种分区方式可以基于模型等高线、凹凸特性、斜率等方法来决定。分区的目的在于能够针对不同区域生成合理的走刀轨迹,避免了简单应用单一走刀路径的局限性。 在实际应用中,该算法结合CAM软件中的区域分割功能,使得每个独立区域内的加工轨迹更加合理,并且实现了区域间刀具轨迹的自动连接,避免了转接处理问题。该算法的可行性和有效性通过实例得到验证。 关键词中的“刀具轨迹”指的是加工过程中刀具移动的路径;“分区域”意味着根据特定的曲面特征将曲面划分成若干子区域;“权因子函数”用于调整Hilbert曲线的走向,进而影响走刀轨迹的生成;而“Hilbert曲线”则是一种能够填充二维空间的连续曲线,被广泛应用于刀具轨迹规划中。 本研究得到了国家自然科学基金青年科学基金的资助,并提供了作者李万军的简介,指出其主要研究方向为数控技术,并提供了电子邮箱地址供进一步联系。
2025-10-29 22:07:08 456KB 首发论文
1
基于深度强化学习(DRL)的DQN路径规划算法及其在MATLAB中的实现。DQN算法结合了深度学习和强化学习,能够在复杂的状态和动作空间中找到最优路径。文中不仅提供了完整的MATLAB代码实现,还包括了详细的代码注释和交互式可视化界面,使用户能直观地观察和理解算法的学习过程。此外,代码支持自定义地图,便于不同应用场景的需求。 适合人群:对深度强化学习感兴趣的研究人员和技术爱好者,尤其是希望深入了解DQN算法及其实际应用的人群。 使用场景及目标:适用于研究和开发智能路径规划系统,特别是在机器人导航、自动驾驶等领域。通过学习本文提供的代码和理论,读者可以掌握DQN算法的工作原理,并将其应用于各种迷宫求解和其他路径规划任务。 其他说明:为了确保算法的有效性和稳定性,文中提到了一些关键点,如网络结构的选择、超参数的优化、环境建模和奖励函数的设计等。这些因素对于提高算法性能至关重要,因此在实际应用中需要特别注意。
2025-10-29 21:18:17 480KB
1
基于改进A*算法融合DWA算法的机器人路径规划MATLAB仿真程序(含注释) 包含传统A*算法与改进A*算法性能对比?改进A*算法融合DWA算法规避未知障碍物仿真。 改进A*算法做全局路径规划,融合动态窗口算法DWA做局部路径规划既可规避动态障碍物,又可与障碍物保持一定距离。 任意设置起点与终点,未知动态障碍物与未知静态障碍物。 地图可更改,可自行设置多种尺寸地图进行对比,包含单个算法的仿真结果及角速度线速度姿态位角的变化曲线,仿真图片丰富 基于改进A*算法融合DWA算法的机器人路径规划MATLAB仿真程序是一项结合了经典与现代机器人导航技术的研究成果。该程序采用了改进的A*算法作为全局路径规划的基础,通过优化路径搜索策略,提高了路径规划的效率和准确性。A*算法是一种启发式搜索算法,广泛应用于路径规划领域。它通过评估从起始点到目标点的估计成本来选择最优路径,其中包括实际已经走过的路径成本和估算剩余路径成本。 在此基础上,程序进一步融入了动态窗口法(DWA)算法进行局部路径规划。DWA算法擅长处理机器人在动态环境中移动的问题,能够实时计算出机器人在下一个时间步的最优运动,特别是在存在动态障碍物的环境中,能够快速反应并规避障碍。DWA算法通过在速度空间上进行搜索,计算出一系列候选速度,并从中选出满足机器人运动约束、碰撞避免以及动态性能要求的速度。 本仿真程序不仅展示了改进A*算法与传统A*算法在路径规划性能上的对比,还演示了改进A*算法融合DWA算法在规避未知障碍物方面的优势。用户可以自定义起点和终点,设置未知的动态障碍物和静态障碍物,并对不同尺寸的地图进行规划和仿真。仿真结果不仅给出了路径规划的直观展示,还包括了角速度、线速度、姿态和位角变化的数据曲线,提供了丰富的仿真图片来辅助分析。 本程序的实现不仅对学术研究有重大意义,也在工业领域有着广泛的应用前景。它能够帮助机器人在复杂和变化的环境中保持高效的路径规划能力,对于提高机器人的自主性和灵活性具有重要作用。同时,由于MATLAB环境的用户友好性和强大的数据处理能力,该仿真程序也极大地便利了相关算法的研究与开发。 由于文档中包含了具体的算法实现细节和仿真结果展示,因此对研究者和工程师来说,这不仅是一个实用的工具,也是理解改进A*算法和DWA算法集成优势的宝贵资料。此外,程序的开放性和注释详尽也使其成为教育和教学中不可多得的资源。 这项研究成果通过结合改进A*算法和DWA算法,有效地提高了机器人在复杂环境中的路径规划能力,为机器人技术的发展和应用提供了新的思路和解决方案。通过MATLAB仿真程序的实现,研究者能够更加深入地探索和验证这些算法的性能,进一步推动了智能机器人技术的进步。
2025-10-27 15:46:11 2.9MB matlab
1
内容概要:本文介绍了基于V-REP与MATLAB联合仿真的智能小车项目,涵盖了从设计到实现的全过程。首先,通过CAD工具设计小车的外观和机械结构,并将其导入V-REP进行虚拟仿真测试。接着,利用MATLAB编写控制系统程序,实现了小车的循迹、避障、走迷宫和路径规划功能。每个功能都经过详细的算法设计和代码实现,确保小车在不同环境下能够稳定运行。最后,提供了详细的代码和文档说明,方便其他开发者理解和改进。 适合人群:对机器人技术和仿真工具有一定兴趣的研究人员、工程师以及高校学生。 使用场景及目标:适用于机器人竞赛、科研项目和技术教学等领域,旨在提高智能小车的研发能力和实际应用水平。 其他说明:文中提到的具体代码和文档示例可以通过附件或官方网站获取,为读者提供了全面的学习和参考资料。
2025-10-27 13:31:59 4.5MB
1
内容概要:本文详细介绍了Vrep/Coppeliasim与MATLAB联合仿真环境下,针对UR5协作机器人的机械臂抓取技术和轨迹规划方法。文章首先概述了Vrep和Coppeliasim这两种仿真软件的特点及其在机械臂仿真中的应用,接着重点讨论了基于MATLAB的多项式函数进行轨迹规划的具体步骤和技术细节。此外,还涉及了机械臂的运动学和动力学分析,以及直线、圆弧轨迹规划在笛卡尔空间中的应用。最后,通过具体实例展示了UR5协作机器人在流水线搬运码垛中的实际应用效果。 适合人群:对机器人技术、机械臂仿真、轨迹规划感兴趣的工程技术人员及研究人员。 使用场景及目标:适用于希望深入了解机械臂抓取技术及轨迹规划的研究人员和工程师,旨在提高他们在实际项目中的仿真能力和操作水平。 其他说明:文中提供的实例有助于读者更好地理解和掌握相关技术,同时展望了这些技术在未来更多领域的广泛应用潜力。
2025-10-27 13:14:41 584KB
1
内容概要:本文探讨了卡车联合无人机配送路径规划问题,特别是基于FSTSP(固定起点旅行商问题)和D2TSP(双重旅行商问题)的遗传算法解决方案及其Matlab代码实现。文中详细介绍了卡车与两架无人机协同工作的具体流程,包括无人机的起降时间点和服务点分配方案。通过遗传算法优化路径规划,考虑了卡车油耗、无人机能耗以及时间窗口惩罚等因素,最终实现了最低成本的路径规划。此外,还讨论了算法中的基因结构设计、适应度函数、交叉算子和可视化展示等方面的技术细节。 适合人群:对物流配送系统优化感兴趣的科研人员、算法开发者及物流行业从业者。 使用场景及目标:适用于需要优化多模态运输系统的场景,如城市内的紧急物资配送、商业区货物派送等。目标是通过合理的路径规划,减少运输成本并提高配送效率。 其他说明:文中提到的遗传算法参数调整对于获得更好的解质量至关重要,同时也强调了实际应用中可能遇到的问题及解决方案,如单行道处理和无人机续航管理等。
2025-10-26 13:11:48 534KB
1
内容概要:本文详细探讨了卡车联合无人机配送路径规划问题,特别是基于FSTSP(固定起点旅行商问题)和D2TSP(双重旅行商问题)的遗传算法解决方案及其Matlab代码实现。文中介绍了卡车与两架无人机协同工作的具体机制,包括无人机的起降时间点和服务点分配方案。通过遗传算法优化路径规划,考虑了卡车油耗、无人机能耗以及时间窗口惩罚等因素,最终实现了最低成本的路径规划。此外,还讨论了交叉算子、变异概率等参数对算法性能的影响,并展示了路径可视化的实际效果。 适合人群:对物流配送系统优化感兴趣的科研人员、算法开发者及物流行业从业者。 使用场景及目标:适用于需要优化多模态运输系统的场景,如城市内的紧急物资配送、商业区货物派送等。目标是通过遗传算法提高配送效率,降低成本,确保无人机和卡车的最佳协作。 其他说明:文章不仅提供了详细的理论背景和技术实现方法,还包括了具体的代码片段和参数调整技巧,有助于读者深入理解和应用该算法。
2025-10-26 13:11:25 418KB
1
"RRT*算法与DWA避障融合的全局路径规划Matlab代码实现",RRT*全局路径规划,融合局部动态窗口DWA避障matlab代码 ,RRT*; 全局路径规划; 局部动态窗口DWA避障; MATLAB代码; 融合算法。,基于RRT*与DWA避障的Matlab全局路径规划代码 RRT*算法与DWA避障融合的全局路径规划是一个高度集成的机器人导航技术,它将全局路径规划和局部避障结合起来,以实现机器人的高效、安全导航。RRT*(Rapidly-exploring Random Tree Star)算法是一种基于采样的路径规划算法,能够为机器人提供一个近似最优的路径。DWA(Dynamic Window Approach)是一种局部避障算法,它根据机器人的动态特性来计算出在短期内安全且有效的控制命令。通过将这两种算法结合起来,不仅能够生成一条从起点到终点的全局路径,还能实时地处理环境中的动态障碍物,提升机器人的自主导航能力。 在具体的Matlab代码实现中,开发者需要考虑算法的具体步骤和逻辑。RRT*算法将开始于起点并不断扩展树状结构,直至达到终点。在每一步扩展中,会随机选择一个采样点并找到距离最近的树节点,然后沿着两者之间的方向扩展出新的节点。随后,会评估新的节点并将其加入到树中,这个过程将重复进行,直到找到一条代价最小的路径。 然而,机器人在实际移动过程中很可能会遇到动态障碍物。这时就需要DWA算法发挥作用。DWA算法通过预测未来短时间内机器人的可能状态,并评估不同的控制命令对这些状态的影响。基于这些评估结果,算法会选出最佳的控制命令,使得机器人在避免碰撞的同时,尽可能朝着目标方向前进。 在Matlab中实现这一融合算法,开发者需要编写两部分代码,一部分负责RRT*路径规划,另一部分则负责DWA避障。代码中将包含初始化环境、机器人模型、障碍物信息以及路径搜索的函数。RRT*部分需要实现树的构建、节点的选择和扩展等逻辑;DWA部分则需要实现动态窗口的计算、控制命令的生成以及避障的逻辑。此外,还需要考虑如何在实时情况下快速地在RRT*路径和DWA避障之间切换,以确保机器人的导航效率和安全。 RRT*算法与DWA避障融合的Matlab代码实现不仅涉及算法设计,还需要考虑算法在复杂环境中的稳定性和鲁棒性。这意味着代码在实现时,需要经过充分的测试和调试,确保在不同的环境条件下都能够稳定运行。此外,为了提高代码的可读性和可维护性,开发人员还需要编写清晰的文档和注释,使得其他研究人员或者工程师能够理解和使用这些代码。 RRT*算法与DWA避障融合的全局路径规划是一个复杂但非常实用的技术,它为机器人提供了一种高效的导航解决方案。通过Matlab这一强大的数学计算和仿真平台,开发者可以更加容易地实现和测试这一复杂算法,以期在未来机器人技术的发展中发挥重要的作用。
2025-10-26 09:59:46 32KB 开发语言
1
内容概要:文章研究基于鲸鱼优化算法(WOA)对机械臂353多项式轨迹进行时间最优规划的方法,并提出一种改进型鲸鱼算法以提升收敛速度与优化精度。通过Matlab实现带关节角度、速度、加速度约束的轨迹优化,采用罚函数法处理约束条件,并引入非线性收敛因子、自适应权重和随机反向学习等策略改进原始WOA。实验结果表明,改进算法在六自由度机械臂上相较标准WOA能获得更短的运动时间与更快的收敛性能。 适合人群:具备一定机器人学与优化算法基础,熟悉Matlab编程,从事智能控制、机械臂轨迹规划或智能制造相关研究的研发人员或研究生。 使用场景及目标:①实现机械臂时间最优轨迹规划;②对比标准WOA与改进WOA在复杂优化问题中的性能差异;③掌握罚函数法、运动学验证等工程化约束处理技巧。 阅读建议:结合提供的Matlab源码理解算法实现细节,重点关注目标函数设计、约束处理机制及位置更新公式的改进逻辑,建议在仿真环境中验证算法有效性并调整参数以适应不同机械臂结构。
2025-10-24 11:23:34 711KB
1