数据集样本数量为5870,所有图片已标注为YOLO txt格式,划分为训练集、验证集和测试集,能直接用于YOLO算法的训练。可用于YOLO3d打印缺陷检测模型训练,机器学习,深度学习,人工智能,python,pycharm。
2024-03-13 16:21:35 233.88MB 数据集 缺陷检测 3d打印 深度学习
1
Halcon深度学习-企业项目实战(核酸管外观缺陷检测)已训练模型
2023-10-20 22:58:09 36.81MB 深度学习 商业资料
1
Halcon深度学习-企业项目实战(核酸管外观缺陷检测)图片
2023-10-10 10:17:37 366.12MB 深度学习 商业资料 范文/模板/素材
1
精通GPU-利用CUDA加速图像处理,提升缺陷检测精度,CSDN CSDN组织关于GPU 方面的视频
2023-10-09 13:58:25 930.6MB 图像处理
1
机器视觉工业缺陷检测的那些事-20210817,涉及到机器视觉过程中的硬件设备的选型(包括如何选择光源、选择什么样的相机、镜头等)、常用的图像处理算法,以及市面上使用较多的算法库。相信肯定对大家有所帮助。
2023-05-05 11:45:56 1.26MB 图像处理 机器视觉
1
基于matlab平台的:水果分级系统(颜色,形状,大小,缺陷,方法bp,分级标准设置,带界面GUI,步骤详细)
2023-04-20 23:39:17 822KB 水果分级 水果缺陷检测
1
绝缘子作为输电环节中的重要设备,在支撑固定导线,保障绝缘距离的方面有着重要作用。深度学习技术的大量应用,计算机运算性能的不断提高,为无人机准确识别和定位绝缘子,实时跟踪拍摄开辟了新的解决途径。本文对输电线路中绝缘子进行识别及定位,利用深度学习技术采取基于YOLOv5 算法的目标检测手段,结合绝缘子数据集的特点,对无人机拍摄图片进行训练,实现对绝缘子精准识别和定位,大幅提升无人机巡检时对绝缘子设备准确跟踪、判定的效率,具有十分重要的应用效果。本项目可以作为计算机专业毕业涉及,提供处理好的数据集、视频和三组训练好的模型,部署简单,并且具有可用于图片检测和视频检测的图形化界面,方便易用。
2023-04-14 19:21:29 350.45MB 数据集 软件/插件
pyqt+yolov5+pcb缺陷检测,登入界面+支持图像视频检测整体为YoloV5的代码 ui文件夹中存放ui的py文件和原件,便于使用与更改 ui_img存放ui使用的图像文件 utils中添加了一个用户账户工具id_utils.py detect_logical.py是检测界面的逻辑代码 main_logic.py是主界面的逻辑代码 userinfo.csv存放用户账号id信息
2023-04-12 18:55:58 49.28MB pyqt yolov5 pcb
1
钢材表面缺陷检测数据集:NEU-DET 1.包含YOLO模型所需处理好的.txt标签labels文件,已测试; 2.包含所有1800张原始图片及标签xml文件。
2023-03-24 09:59:58 27.04MB NEU-DET 钢材表面检测 YOLO
1
本人收集到的各种场景绝缘子数据,包含正常与缺陷,可用来训练绝缘子检测,分割或者缺陷绝缘子识别网络,持续收集中~
1