南邮通达电子电路课程设计实验报告拨号按键电路 本课程设计的目的是为了巩固我们对数字电子技术课程所学过的内容,能够运用课程中所掌握的数字电路的分析和设计方法解决实际问题,培养分析问题、解决问题的能力。在设计此课题中,我们要求设计一个具有10位显示的按键显示器,能准确显示按键0~9数字,并且数字依次从右向左移动显示,最低位为当前输入位。同时设置一个显示脉冲信号的示波器,能检测到按键按下时所产生脉冲信号方波的个数。 在这个设计中,我们使用到了移位寄存器、译码显示器、GAL16V8编码器、定时器等芯片及元器件。对于它们的工作特性,我们会有进一步的理解。 脉冲按键拨号电路 脉冲按键拨号电路是本次课程设计的核心部分。该电路由555振荡器、移位寄存器、译码显示器和GAL16V8编码器等组成。其中,555振荡器产生1Hz的脉冲信号,移位寄存器用于存储按键的输入信号,译码显示器用于显示按键的数字信息,GAL16V8编码器用于将按键信号编码为显示信息。 移位寄存器 移位寄存器是本次课程设计中使用的重要芯片之一。它可以存储按键的输入信号,并将其移位到显示器上。在这个设计中,我们使用了移位寄存器来存储按键的输入信号,并将其显示在显示器上。 译码显示器 译码显示器是本次课程设计中使用的另一个重要芯片。它可以将按键信号译码为显示信息,并将其显示在显示器上。在这个设计中,我们使用了译码显示器来将按键信号译码为显示信息,并将其显示在显示器上。 GAL16V8编码器 GAL16V8编码器是本次课程设计中使用的重要芯片之一。它可以将按键信号编码为显示信息,并将其传输到显示器上。在这个设计中,我们使用了GAL16V8编码器来将按键信号编码为显示信息,并将其传输到显示器上。 555振荡器 555振荡器是本次课程设计中使用的重要芯片之一。它可以产生1Hz的脉冲信号,并将其传输到移位寄存器和译码显示器上。在这个设计中,我们使用了555振荡器来产生1Hz的脉冲信号,并将其传输到移位寄存器和译码显示器上。 技术指标 在这个设计中,我们需要满足以下技术指标: * 系统功能要求:系统可以准确地显示按键0~9数字,并且数字依次从右向左移动显示。 * 系统结构要求:系统由555振荡器、移位寄存器、译码显示器、GAL16V8编码器和示波器等组成。 * 技术指标:系统可以检测到按键按下时所产生脉冲信号方波的个数。 结论 本次课程设计的目的是为了巩固我们对数字电子技术课程所学过的内容,能够运用课程中所掌握的数字电路的分析和设计方法解决实际问题,培养分析问题、解决问题的能力。在这个设计中,我们使用到了移位寄存器、译码显示器、GAL16V8编码器、定时器等芯片及元器件,设计了一个具有10位显示的按键显示器,能准确显示按键0~9数字,并且数字依次从右向左移动显示,最低位为当前输入位。
2024-08-17 18:25:02 1.75MB 电子电路课程设计
1
"揭秘STM32的心电采集仪电路原理" 本文设计了以STM32为控制核心,AD620和OP07 为模拟前端的心电采集仪,本设计简单实用,噪声干扰得到了有效抑制。本设计的关键部分是心电采集电路,它是心电采集仪的核心部分,心电信号属于微弱信号,其频率范围在0.03~100 Hz 之间,幅度在0~5 mV 之间,同时心电信号还掺杂有大量的干扰信号,因此,设计良好的滤波电路和选择合适的控制器是得到有效心电信号的关键。 主控模块电路设计的核心是STM32F103VET 单片机,它是ST 意法半导体公司生产的32 位高性能、低成本和低功耗的增强型单片机,具有100 个I/O 端口和多种通信接口。前置放大电路的设计是模拟信号采集的前端,也是整个电路设计的关键,它不仅要求从人体准确地采集到微弱的心电信号,还要将干扰信号降到最低,因此选择合适的运算放大器至关重要。在这里选择了AD620实现前置放大,AD620具有高精度、低噪声、低输入偏置电流低功耗等特点,使之适合ECG 监测仪等医疗应用。 带通滤波器的设计是为了从前置放大电路输出的心电信号中滤除干扰信号和基线漂移等干扰成分,所需采集的有用心电信号在0.03~100 Hz 范围之间,因此需设计合理的滤波器使该范围内的信号得以充分通过,而该范围以外的信号得到最大限度的衰减。在这里采用具有高精度,低偏置,低功耗特点的两个OP07 运放分别组成二阶有源高通滤波器和低通滤波器。 本设计实现的是以STM32为控制核心,以AD620,OP07 为模拟信号采集端的小型心电采集仪,该设计所测心电波形基本正常,噪声干扰得到有效抑制,电路性能稳定,基本满足家居监护以及病理分析的要求,整个系统设计简单,成本低廉,具有一定的医用价值。 知识点: 1. 心电采集仪的设计原理和技术应用 2. STM32 单片机的应用和特点 3. AD620 运算放大器的应用和特点 4. OP07 运算放大器的应用和特点 5. 滤波电路的设计原理和技术应用 6. 心电信号的采集和处理技术 7. 医疗电子技术的应用和发展前景 8. 电路设计的稳定性和可靠性分析 9. 微弱信号的采集和处理技术 10. 医疗电子设备的设计和开发技术
2024-07-10 12:08:47 164KB STM32 信号处理 控制电路 电路设计
1
初学者Multisim仿真设计放大电路资料,留下来供自己学习交流
2024-07-08 16:05:22 915KB Multisim 放大电路
1
在当前通信市场的带动下,通信技术飞速向前发展,手持无线通信终端成为其中的热门应用之一。因此,单片集成的射频收发系统正受到越来越广泛的关注。典型的射频收发系统包括低噪声放大器(LNA)、混频器(Mixer)、滤波器、可变增益放大器,以及提供本振所需的频率综合器等单元模块,如图1 所示。对于工作在射频环境的电路系统,如2.4G 或5G 的WLAN 应用,系统中要包含射频前端的小信号噪声敏感电路、对基带低频大信号有高线性度要求的模块、发射端大电流的PA 模块、锁相环频率综合器中的数字块,以及非线性特性的VCO等各具特点的电路。众多的电路单元及其丰富的特点必然要求在这种系统的设计过程中有一个功能丰富且
2024-07-05 16:49:04 147KB 基于Cadence Virtuoso
1
在电子设计领域,FPGA(Field-Programmable Gate Array)是一种重要的可编程逻辑器件,它允许用户根据需求自定义数字电路。本资料主要涵盖了FPGA数字逻辑电路的设计与分析的基础知识,通过一个典型的一位全加器设计案例,帮助学习者深入理解FPGA的工作原理和设计流程。 全加器是一个基本的数字逻辑单元,它能同时处理两个二进制位的加法以及一个进位输入。在设计全加器时,我们首先从真值表开始,这是一个列出所有可能输入组合及其对应输出的表格。对于一位全加器,输入是两个二进制位A和B,以及一个进位输入Cin,输出是两个二进制位S(sum)和一个进位输出Cout。通过真值表,我们可以确定所需的基本逻辑功能。 接下来,我们将这些逻辑功能转化为门级实现,这通常涉及AND、OR和NOT门等基本逻辑门的组合。例如,一位全加器可以由两个半加器(处理两个二进制位的加法)和一个OR门(处理进位)组成。在硬件电路图中,这些门被表示为图形符号,并通过连线来表示它们之间的连接。 为了验证电路的正确性,我们需要进行功能仿真。在VHDL或Verilog这样的硬件描述语言中,我们可以编写代码来描述全加器的行为。仿真工具如Xilinx的Vivado会根据代码生成电路模型,并模拟不同输入下的输出。仿真波形图显示了随着时间变化的信号状态,这对于检查电路是否按预期工作至关重要。 在完成门级设计后,我们可以转向行为级描述。Verilog是一种常用的行为级语言,它允许我们用更高级别的抽象来描述全加器的逻辑。在这种描述中,我们不再关心具体的门电路,而是关注逻辑功能。全加器的行为级描述通常包括几个赋值语句,用于计算输出S和Cout。 将行为级描述与门级实现进行对比,可以帮助我们理解高层次抽象如何映射到实际硬件。这有助于优化设计,比如减少逻辑资源使用、提高速度或者降低功耗。 提供的文件"FPGA数字逻辑电路分析与设计.pdf"可能包含了详细的设计步骤、理论解释和实例分析。而"vivado_prj"可能是Vivado项目文件,其中包含了设计的源代码、编译结果和仿真设置。"src"目录可能包含Verilog代码和其他辅助文件,供学习者参考和实践。 这个学习资源旨在帮助初学者掌握FPGA数字逻辑电路设计的基本技巧,通过实例教学如何从真值表开始,经过门级设计、仿真验证,到最后的行为级描述,全方位理解FPGA的设计过程。通过实践这些步骤,学习者可以更好地理解和运用Verilog,为未来更复杂的FPGA项目打下坚实基础。
2024-07-04 10:51:06 322KB
1
该文件包含两份由74LS190设计的10以内与100以内的十进制加减计数器,通过四引脚数码管显示加减计数,电路由multisim.14软件仿真设计,内包含74LS190功能表图片与电路图片,电路设计详情可见主页博文。
2024-06-30 01:59:21 462KB 74LS190 加减计数器
1
基于74系列芯片的优先编码电路、锁存器、译码电路将参赛队的输入信号在数码管上显示,抢答器电路和主持人复位键组成主体电路。通过定时电路将秒脉冲产生的信号在显示器上输出实现计时功能和计分电路,共同构成扩展电路。
2024-06-21 14:58:09 336KB 倒计时电路
1
三极管β测量电路的设计.ms14
2024-06-15 12:56:40 533KB
1
基于FPGA的交通控制灯逻辑电路的设计
2024-06-04 17:07:39 1.37MB fpga
1
振荡电路的设计与应用
2024-06-03 13:29:30 19.87MB
1