在我们常见的电子元器件中,贴电感是常见的了,贴的应用非常的广,但贴电感在电路中使用的功能都是一样的,贴电感它有两个基本的功能是电路谐振和扼流电抗,那么下面为我们就来具体说一下贴电感两个基本功能在电路中的运用吧。 贴电感的作用都是扼流滤波和滤除高频杂波,有储能的作用,用于电源滤波回路,侧重于抑制传导性干扰。在电子设备的PCB板电路中会大量使用感性元件和EMI滤波器元件。比如贴电感。表面贴装元件的好处在于小的封装尺寸和能够满足实际空间的要求。除了阻抗值,载流能力以及其他类似物理特性不同外,通孔接插件和表面贴装器的其他性能特点基本相同。 金籁科技贴一体成型电感 贴电感在电路使用中时,要求电感实现两个基本功能:电路谐振和扼流电抗。谐振电路包括谐振发生电路,振荡电路,时钟电路,脉冲电路,波形发生电路等等。谐振电路还包括高Q带通滤波器电路。要使电路产生谐振,必须有贴电容和贴电感同时存在电路中。 在贴电感的两端存在寄生电容,这是由于器件两个电极之间的铁氧体本体相当于电容介质而产生的。在谐振电路中,电感必须具有高Q,公差小,稳定的温度系数,才能达到谐振电路窄带,低的
2024-01-13 17:17:45 109KB 金籁科技 贴片电感
1
电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。 电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。如果将杂散电容“集中”为一个电容,则从电感的等效电路可以看出在某一频率后所呈现的电容特性。 金籁科技一体成型电感 当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点: 1、当电感L中有电流I流过时,电感储存的能量为:E=0.5×L×I2(1)。 2、
2024-01-13 17:11:36 204KB 金籁科技 一体成型电感 贴片电感
1
电感做为一种电路中常用的电子元器件,应用于各种电子产品,应用范围非常广泛。在电感元器件中有一个种类,就是叫线圈。线圈一般指的是不带磁芯的电感器,如空心线圈,偏转线圈,马达等。 金籁科技一体成型电感线圈 常用的扁平线圈,空心线圈都是绕几圈,电感量通常非常小,差不多只有几个纳亨,比较适合用于高频电路。在高频电路图中,这类线圈边上偶尔会有10T的标记。那电感10T是什么意思? 经常会在一些高频电路图上,看到发射或接收部份有一个电感符号旁边会写上10T、11T、12T、13T、20T等,那电感10T什么意思,这种电感常指的就是空心线圈,意思就是空心线圈绕制成10匝。 T是Turns的缩写,也就是匝的意思。 电感线圈 常见的线圈标号一般从2T~20T不等。即,常用的空心线圈数一般是2匝到20匝。电感10T是经常使用的一种线圈。通常来说用几T的线圈主要看高频电路中需要的电感量,频率越高,T数字越小。 如果要制作成这种10T的线圈,除了知道匝数之外,还有二个比较重要的参数,一是要知道要多粗的线径来绕制,二是要知道空心线圈内径是多少。 本文由好电感 金籁造的金籁科技转载发表。更多
2023-12-16 16:00:32 221KB 金籁科技 电感线圈 贴片电感
1
在电感的实际应用中,有时会出现意料之外的现象,故实际应用中的电感还得关心这些: 1、温度过高 电感器在工作过程中发热,导致温度升高时正常现象,若温度过高,铁芯和线圈容易因温度导致电感量的变化。所以,需注意电感器工作的环境温度和选用规格适当的电感器。 2、磁场干扰 电感器在工作是因有电流流通而在周围产生磁场。其他元件的摆放位置应尽量电感器或与电感线圈互成直角,以减少干扰。若要求较高,则可换用带屏蔽罩的电感器。 金籁科技一体成型电感 3、分布电容 电感器个层线圈之间,会产生分布电容量,可造成高频信号旁路,降低电感器的实际滤波效果,所以,在利用电感器进行高频滤波的时候要特别注意。 4、电感值的测量 用仪表测量电感值与Q之时,测试引线应尽量靠近电感器,以求数据准确。 本文由好电感 金籁造的金籁科技转载发表。
1
“垂向异重流式水沙分离鳃”鳃型式对水沙分离的影响研究,朱超,邱秀云,RESEARCH FOR THE WATER SAND SEPARATION EFFECT ON THE PATTERN OF THE GILL-PIECE OF“ THE VERTICAL-COMPONENT DENSITY FLOW WATER-SEDIMENT SEPARATION DEVICE”
2023-12-09 11:23:13 357KB 首发论文
1
很好的单空间后方交会实现代码 ,用VC++编写......
2023-11-15 08:02:56 2.25MB 单片空间后方交会
1
用MATLAB计算矩形微带贴天线的尺寸和1/4波长阻抗变换器的特性阻抗
2023-11-04 14:08:01 929B matlab
1
缺陷数据集,缺陷类型(针孔、擦伤、脏污、褶皱)
2023-11-02 10:49:27 81.87MB 数据集
1
随着现代芯中IP/核数量的增加,对芯上的高容量和灵活网络的需求也随之增加。 在本计画中,我们开发了一种多通道电路交换的NoC,使用一种有效的搜寻演算法,以及一种新颖的流量控制协定,以减少缓冲区的大小。 在电路交换NoC中,一旦在任意两个节点之间建立了路径,就可以以恒定的延迟发送数据; 这与packet交换式NoC形成了对比,在NoC中,数据包可能以不同的延迟接收,并且可能出现顺序错误。 利用节点之间的多通道是该项目的另一个新成果,它增加了为一个遍历数据包找到路径的概率,从而显著提高了NoC的最大可达吞吐量。 该设计可配置为将每个链接划分为单个、双通道或四通道。 所设计的NoC在网络大小(4×4 ~ 128×128)、信道数(1、2或4)、数据带宽(16 ~ 512位)等方面具有很高的灵活性。 例如,4x4网络中的单个通道128位互连使用90nm技术,每个节点占用0.026mm2的硅。 运行在2.0 GHz,它能够传输高达256 Gbps的每个节点,并消耗约92 fJ/位。
2023-10-23 22:19:28 2.92MB 嵌入式系统
1
在单芯多核系统中,NoC已成为主流上通信架构。有效的任务调度是挖掘计算并行性的重要方法。在经典静态列表调度基础上,针对HEFT算法中节点排序会得出较多的优先级相同节点的问题,提出一种节点二次排序的调度方法。在边的调度上应用了ALAP原则,改进算法有效提高了调度效果。实验表明,新方法对bl、blcomp、blio等节点优先权算法得出的任务列表均有良好的调度效果,适应性较好;对于2D Mesh同构NoC架构,改进算法对三种节点优先权算法有1.15倍的平均加速比,最大可有1.27倍加速比。
1