基于眼底图像监督学习的整体视网膜血管分割
2022-05-07 18:42:47 3.25MB 研究论文
1
数据集名称:成人自闭症谱系筛查数据 摘要:自闭症谱系障碍(ASD)是一种与显着的医疗费用有关的神经发育疾病,早期诊断可以显着减少这些疾病。 不幸的是,等待ASD诊断的时间很长,而且程序的成本效益也不高。 自闭症的经济影响和全世界ASD病例数量的增加表明,迫切需要开发易于实施和有效的筛查方法。 因此,迫切需要进行时间高效且可访问的ASD筛查,以帮助卫生专业人员并告知个人是否应进行正式的临床诊断。 全球ASD病例数的快速增长需要与行为特征相关的数据集。 但是,这样的数据集很少,因此很难进行全面的分析以提高ASD筛选过程的效率,敏感性,特异性和预测准确性。 目前,与临床或筛查有关的自闭症数据集非常有限,并且大多数都是自然遗传的。 因此,我们提出了一个与成人自闭症筛查有关的新数据集,其中包含20个特征,可用于进一步分析,特别是在确定有影响力的自闭症特征和改善ASD病例分类方面。 在此数据集中,我们
1
无监督文本聚类 使用无监督学习对单词进行聚类的代码这将一段文本作为输入,并使用无监督聚类对每个单词进行聚类。
2022-05-05 23:43:56 5KB Python
1
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:42 1.16MB 机器学习 学习 文档资料 人工智能
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:36 913KB 机器学习 学习 文档资料 人工智能
基于分歧的半监督学习 基于分歧的半监督学习
2022-05-02 14:07:06 432KB 综合资源
聚类分析是指将数据对象的集合分组为由类似的对象组成的多个类的分析过程。 基本概念 聚类(Clustering)就是一种寻找数据之间内在结构的技术。聚类把全体数据实例组织成一些相似组,而这些相似组被称作簇。处于相同簇中的数据实例彼此相同,处于不同簇中的实例彼此不同。 聚类技术通常又被称为无监督学习,与监督学习不同的是,在簇中那些表示数据类别的分类或者分组信息是没有的。 数据之间的相似性是通过定义一个距离或者相似性系数来判别的。图 1 显示了一个按照数据对象之间的距离进行聚类的示例,距离相近的数据对象被划分为一个簇。 图 1  聚类分析示意 聚类分析可以应用在数据预处理过程中,对于复杂结构的
2022-04-25 21:36:25 239KB 层次聚类方法 方法 无监督学习
1
 文中提出了一种肝脏在CT(Computed Tomography)图像中的半监督自动分割方法。该方法采用深度协同训练模型以解决医学图像领域中有标签数据获取困难且成本高的问题。首先利用有标签数据建立U-Net和2D V-Net两种分割网络,并分别对无标签数据进行分割,然后对分割结果进行粗略挑选,再进行精细挑选,最后将置信度较高的伪标签加入到训练集中,重复此过程直到对验证集分割结果的Dice值不再增大时为止。提出的方法可以减少迭代过程中累积的误差,在2017 Liver Tumor Segmentation(LiTS)数据集上的结果表明,该方法与全监督学习相比可以有效提高分割精度。
1
这些年在计算机视觉领域中的自监督学习- 计算机视觉.pdf
2022-04-21 19:10:36 2.94MB 计算机视觉 学习 人工智能
人工智能11监督学习
2022-04-15 18:13:04 3.36MB 人工智能 学习 数据仓库