程序是一个以柔性互联系统(SOP)为核心的配电网多时段优化调度模型,结合了电压控制、无功补偿、OLTC、投切电容器(CB)等多种调节手段,并通过 YALMIP + Gurobi 实现求解,目标是最小化网损与电压偏差的加权和。 在电力系统中,配电网是连接电网与用户的重要环节,它直接关系到电能的质量和供电的可靠性。随着能源结构的转型和电力电子设备的广泛应用,配电网面临着日益增长的调节需求和运行的复杂性。因此,为了保证电能质量,降低网损,提高配电网的运行效率,研究和开发先进的配电网优化调度模型显得尤为重要。 柔性互联系统(SOP)是一种能够有效提升电网运行灵活性和可靠性的新型控制策略,它能够综合多种调节手段,例如电压控制、无功补偿、变压器的有载调压(OLTC)以及投切电容器(CB)等,以适应电网运行中可能出现的各种情况。通过SOP,可以有效实现对配电网功率流的动态调控,从而达到优化网络性能的目的。 在构建配电网多时段优化调度模型时,目标是实现电能的最优分配。通过模型的构建,可以最小化因运行中的能量损耗和电压偏差带来的成本。电能损耗通常以网损的形式表现,它不仅会降低电网的传输效率,还会增加运营成本,甚至影响电网设备的寿命。电压偏差则是指电压值偏离规定范围的程度,它直接关系到电能质量。电网在不同时间段的负荷变化较大,因此需要一个能够在多时段内均能保持良好运行状态的优化调度模型。 为了实现上述目标,研究人员采用了YALMIP + Gurobi这一组合工具来求解优化调度模型。YALMIP是一个用于模型化、分析和求解优化问题的MATLAB接口,而Gurobi是一个功能强大的数学规划求解器。通过这两种工具的结合,可以在保证求解质量的同时,提高模型求解的速度和效率。 在实际应用中,配电网优化调度模型会涉及到大量的实时数据和历史数据,如负荷数据、发电数据、网络拓扑结构、设备参数等。这些数据的获取、处理和分析对优化调度模型的准确性和实用性至关重要。同时,该模型还需适应多种运行模式和约束条件,例如负载预测、设备故障应对、电力市场的实时电价等。因此,模型需要具有足够的灵活性和扩展性,以适应不断变化的电网环境和运营需求。 在配电网多时段优化调度模型中,通过合理安排各种调节手段,可以实现对电压水平和电能损耗的有效控制。例如,OLTC可以通过改变变压器的变比来调整电压水平,而投切电容器可以提供无功功率,改善电网的功率因数。此外,合理的网络重构也是优化调度的一个重要方面,它可以通过改变电网的拓扑结构来平衡负荷,降低网损。 柔性互联系统为核心的配电网多时段优化调度模型在现代电力系统中扮演着至关重要的角色。它不仅可以提高电能质量,降低运行成本,还能增强电网对负荷变化的适应能力,提升电网的整体性能。随着智能电网技术的不断发展,这类优化调度模型将会在未来的电网规划和运行中发挥更加重要的作用。
2026-01-07 22:04:27 845KB
1
下面我们将要优化它的几何结构。 把Task改为Geometry Optimization ,把Quality改为Fine。 优化当中的默认设置是优化原子坐标.尽管如此,在本例中我们不仅要优化原子坐标也要优化晶格. 按下Task右侧的More...按钮, 选中Optimize Cell。关闭对话框.当我们改变Quality时,其他的参数也会有所改变来反映Quality的改变。 选择Properties标签,可从中指定我们想要计算的属性。选中Band structure和Density of states。另外,我们也可以具体指明job control选项,例如实时更新等。 选择Job Control标签,选中More...按钮。在CASTEP Job Control Options对话框中,把Update 的时间间隔改为30秒。关闭对话框。 按下Run按钮,关闭对话框。 几秒钟之后,在Project Explorer中出现一个新的文件,它包含所有的运行结果。一个工作日志窗口也会出现,它包含工作的运行状
2026-01-07 10:33:19 1.45MB CASTEP教程
1
**ANSYS概述** ANSYS是一款强大的多物理场仿真软件,被广泛应用于工程领域的各种复杂问题求解,包括结构力学、热流体、电磁学、声学、流固耦合等。它提供了全面的建模、求解和后处理功能,能够帮助工程师在设计阶段预测产品性能,从而进行优化。 **拓扑优化** 拓扑优化是结构优化的一种方法,旨在通过改变结构的几何形状,以最小化重量或成本,同时满足特定的设计约束和载荷条件。在ANSYS中,拓扑优化可以帮助设计师找到最优的材料分布,使得在满足性能要求的同时,结构的重量最轻或者成本最低。 **ANSYS中的拓扑优化步骤** 1. **模型准备**:需要在ANSYS Workbench中创建一个几何模型,这可以是草图、3D模型或者是导入的CAD模型。然后,需要定义材料属性,如密度、弹性模量和泊松比。 2. **定义边界条件**:接下来,要设定结构的固定边界、加载条件和约束。这包括施加在结构上的力、位移、压力等。 3. **设置优化参数**:在ANSYS的OptiStruct模块中,选择拓扑优化选项,并设定目标函数(如最小化重量)和设计变量(如元素的体积分数)。此外,还需要定义设计区域和保留区域,前者是优化会改变形状的区域,后者则保持不变。 4. **运行优化**:执行优化求解器,软件将自动计算并迭代调整材料分布,直到达到预设的优化目标。 5. **后处理**:优化完成后,ANSYS提供丰富的后处理工具来可视化优化结果,包括查看优化后的拓扑形状、应力分布、位移等。这些结果有助于评估优化效果并为后续的细节设计提供指导。 6. **细节设计与制造**:根据优化得到的拓扑形状,工程师可以进一步细化设计,将其转化为可制造的实体模型。这个过程可能涉及到网格细化、特征提取和修改,以适应制造工艺限制。 **压缩包文件内容** "拓扑优化的例子"很可能是包含了一个或多个实际的ANSYS拓扑优化案例。这些例子通常包括完整的分析流程,从模型创建到结果分析,可能还包括了具体的设置参数和求解步骤。通过学习这些例子,用户可以更好地理解如何在实际工作中应用ANSYS进行拓扑优化,提高设计效率和质量。 ANSYS的拓扑优化功能对于工程设计来说是一个强大的工具,它可以帮助工程师实现创新设计,提高产品的性能和经济性。通过深入研究和实践提供的案例,用户可以掌握这一技术,将其有效地应用于自己的项目中。
2026-01-07 10:17:28 1.09MB ansys
1
基于线性准则的考虑风力发电不确定性的分布鲁棒优化机组组合(Matlab代码实现)内容概要:本文介绍了基于线性准则的考虑风力发电不确定性的分布鲁棒优化机组组合方法,并提供了相应的Matlab代码实现。该方法旨在应对风力发电出力的不确定性,通过构建分布鲁棒优化模型,提升电力系统机组组合的可靠性与经济性。文中详细阐述了模型构建思路、线性化处理方式以及不确定性集的设定,结合实际算例验证了所提方法的有效性与优越性,能够有效平衡系统运行成本与风险。; 适合人群:具备电力系统优化调度背景,熟悉Matlab编程,从事新能源并网、机组组合或鲁棒优化研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①解决含高比例风电的电力系统机组组合问题,提升调度方案的鲁棒性;②学习分布鲁棒优化在电力系统中的建模方法,掌握不确定性建模与线性化处理技巧;③通过Matlab代码复现算法,加深对优化模型求解过程的理解。; 阅读建议:建议结合电力系统调度基础知识进行学习,重点关注不确定性建模与优化求解部分,动手运行并调试提供的Matlab代码,有助于深入理解分布鲁棒优化的实际应用与实现细节。
2026-01-06 23:05:19 319KB 电力系统 Matlab 风力发电 机组组合
1
内容概要:本文探讨了含风、光、水、火等多种能源的大规模清洁能源接入电网所引发的系统鲁棒性和经济性协调问题。文中提出了一种基于分布鲁棒优化方法的动态最优潮流模型,该模型将风光等可再生能源的不确定性描述为模糊不确定集,并通过Wasserstein距离来刻画这种不确定性。通过MATLAB的YALMIP和Gurobi平台进行仿真实验,证明了模型的有效性和实用性。 适合人群:对电力系统优化感兴趣的科研人员、工程师以及相关专业的高年级本科生和研究生。 使用场景及目标:适用于研究和开发电力系统优化算法的研究机构和技术公司。目标是在保证系统鲁棒性的前提下,降低运行成本,提升电力系统的经济效益。 其他说明:本文不仅提供了理论模型,还附带了MATLAB示例代码,便于读者理解和实践。此外,文中详细介绍了模型构建的方法和步骤,有助于深入理解分布鲁棒优化的应用。
2026-01-06 22:59:16 569KB
1
基于Wasserstein距离的电气综合能源系统能量与备用调度分布鲁棒优化模型——考虑条件风险价值CVaR的新策略,基于Wasserstein距离与CVaR条件风险价值的电气综合能源系统能量-备用分布鲁棒优化调度模型,matlab代码:计及条件风险价值的电气综合能源系统能量-备用分布鲁棒优化 关键词:wasserstein距离 CVAR条件风险价值 分布鲁棒优化 电气综合能源 能量-备用调度 参考文档《Energy and Reserve Dispatch with Distributionally Robust Joint Chance Constraints》 主要内容:代码主要做的是电气综合能源系统的不确定性调度问题。 通过wasserstein距离构建不确定参数的模糊集,建立了电气综合能源系统—能量备用市场联合优化调度模型,并在调度的过程中,考虑调度风险,利用条件风险价值CVaR评估风险价值,从而结合模糊集构建了完整的分布鲁棒模型,通过分布鲁棒模型对不确定性进行处理,显著降低鲁棒优化结果的保守性,更加符合实际。 ,关键词:matlab代码; Wasserstein距离; CV
2026-01-06 22:57:38 640KB
1
内容概要:本文详细介绍了基于状态空间模型预测控制(MPC)的四旋翼无人机路径跟踪实现方法。首先,通过建立四旋翼的动力学模型,包括位置、姿态、线速度和角速度等12个状态变量以及4个控制输入(电机推力)。然后,为了降低计算复杂度,在悬停点附近进行线性化处理,利用MATLAB的MPC工具箱配置线性MPC控制器,并设置了各种物理约束条件如电机推力范围、速度限制等。对于复杂的高机动任务,则采用了非线性MPC,通过实时迭代方式在线性化当前状态并求解最优控制序列。此外,还讨论了如何通过调整预测时域、控制时域、权重矩阵等参数来提高控制性能,并分享了一些实战经验和技巧,如加入滞后补偿模块应对GPS信号延迟等问题。 适合人群:从事无人机控制系统研究与开发的技术人员,特别是对模型预测控制感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解四旋翼无人机路径跟踪控制机制的研究者和技术开发者。目标是掌握如何运用MPC技术实现高效稳定的路径跟踪,同时了解线性与非线性MPC之间的区别及其应用场景。 其他说明:文中提供了大量MATLAB代码片段作为实例,帮助读者更好地理解和实践相关概念。同时强调了实际应用中的注意事项,如计算资源管理、硬件选型等。
2026-01-06 21:53:00 658KB
1
引入了由非球面角膜和晶状体组成的模型眼, 采用ZEMAX软件进行光线追迹, 为无晶状体眼的人工晶状体的设计提供理论依据。计算表明, 球差是影响人眼像质的关键因素。一般对于正常眼来说, 晶状体的负球差可以部分补偿角膜的正球差, 从而降低整个人眼光学系统的球差, 以保证较好的视觉功能。随着年龄的增长, 晶状体的球差逐渐由负球差转变为正球差, 这样晶状体对人眼整体像差的补偿作用就会减小甚至消失。为了减小球差的影响, 人工晶状体的表面结构需采用非球面设计。当其非球面系数Q值固定时, 人工晶状体的球差主要受到其本身的屈光度的影响。要想优化整个人眼光学系统的球差, 人工晶状体必须要引入一个负的Q值。
2026-01-06 18:33:20 432KB 视觉光学 visual
1
Con北京站聚焦技术落地与前沿趋势,核心方向包括: ​​AI工程化​​:端侧推理、RAG增强、多模态生成成为主流; ​​云原生深水区​​:混合云治理、湖仓一体架构、可观测性技术持续迭代; ​​安全与效能​​:大模型安全防御、研发流程标准化、平台工程价值凸显; ​​行业融合​​:物流、金融、社交等领域的技术跨界创新案例丰富。 大会为开发者提供了从理论到实践的全景视角,推动技术向生产力转化。 小红书FinOps实践:云成本优化与资源效率提升 在当今数字化转型和云计算迅猛发展的背景下,企业的云成本管理和资源效率成为核心议题。梁啟成在其著作中探讨了通过FinOps实践优化云成本、提升资源效率的有效途径。 ### 云资源成本与优化 云资源的成本管理是企业成本优化中的关键。企业需要对云资源的费用、折扣空间、资源开通权限、供应商情况及资源用量归属有清晰的认知。通过对实际资源成本与预算计划的比较,分析成本分摊的合理性,以及资源配置、存储周期和介质是否符合预期,企业可以定期组织成本review,从而对业务目标和资源动因有一个明确的了解。 ### 成本洞察与优化策略 梁啟成提出了两个核心概念,即成本洞察(Inform)和成本优化(Optimize)。成本洞察意在对企业消耗资源的方式和成本进行深入分析,而成本优化则是要通过策略和操作改变现状,实现成本的降低和资源使用效率的提升。目标是通过对外统一混合云计费账单模型,对内提供量价对应的资源账单,让业务部门能够清晰地看到成本,实现精细化运营。 ### 实施成效与案例分析 在梁啟成的实践中,中台自持资源成本占比实现了从15%以上降低到5%的显著效果。通过权责分明,采购部门负责商务节约(saving),中台技术提升效率,业务技术优化用量,从而实现了内外账金额偏差的控制。在资源管理方面,通过中台产品上架管理,资源用量上报、计费项定价与计费出账,提高了资源使用的透明度。 ### 技术细节与性能优化 内存访问延迟是影响CPU利用率的一个重要因素,不同访问方式(本地访问、跨NUMA访问、跨Socket访问)的性能存在显著差异。内存规格越大,可能会导致更激烈的邻居间内存共享竞争。此外,内存使用分布不均衡问题也是优化过程中的一个挑战。在CPU利用方面,通过优化内核配置和管理策略,可以显著提升性能,如通过优化消除IPI中断带来的性能退化,或通过调整系统内存管理策略减少抖动,从而提升CPU利用率和整体QPS。 ### 大型虚拟机与Pod策略 在虚拟化环境的资源优化方面,"大VM小Pod策略"被提出来作为解决方案。该策略包括申请大规格VM,以单socket单VM来避免底层虚拟化的问题;混合多业务,以分散热点分布,减少资源共振;通过K8s调度和内核burst能力提升Pod的弹性和容忍度。这些措施可以显著缓解CPU分层问题,提升峰值利用率,优化资源使用效率。 ### GPU资源的使用优化 在GPU资源使用方面,梁啟成强调了GPU利用率和饱和度的监控,以及计算类型分布和卡型用途的记录。通过使用列存格式(如Parquet)和数据湖技术,可以存储和管理多云统一AI训练数据集,减少冗余存储,并优化跨云数据传输和异构介质分层管理数据。 ### 结论 梁啟成的FinOps实践为企业提供了一个全面的云资源成本优化和资源效率提升的蓝图。通过对成本的深入洞察、优化策略的实施以及技术层面的性能调优,企业可以实现云资源的精细化运营,从而在保障业务目标达成的同时,实现成本的有效控制和资源的高效利用。这些实践不仅有助于企业提升技术能力,而且能够促进业务流程的优化,达到降本增效的双重目的。
2026-01-06 17:10:40 3.08MB 人工智能 AI
1
内容概要:本文介绍了一种新的优化算法——冠豪猪优化算法(CPO),并将其应用于变分模态分解(VMD)中,以优化VMD的参数。CPO算法通过模拟冠豪猪的觅食行为,在多维度、非线性和复杂问题的求解中表现出色。文中详细介绍了CPO-VMD优化方法的具体步骤,包括初始化参数、选择适应度函数、运行CPO算法、进行VMD分解以及评估与选择最佳参数。实验部分展示了使用单列信号数据(如故障信号、风电等时间序列数据)进行的实验,验证了CPO-VMD方法的有效性。 适合人群:从事信号处理、故障诊断、风电等相关领域的研究人员和技术人员。 使用场景及目标:适用于需要对复杂信号进行有效分解和处理的场合,特别是那些涉及多维度、非线性和复杂问题的研究项目。目标是通过优化VMD参数,提升信号处理的精度和效率。 其他说明:程序已在Matlab上调试完成,可以直接运行,仅需替换Excel数据。支持四种适应度函数的选择,分别为最小包络熵、最小样本熵、最小信息熵和最小排列熵。
2026-01-06 16:46:21 697KB
1