首先,对面向高速公路自动驾驶决策的深度强化学习算法进行改进。分别 针对当前常用于自动驾驶决策的两种深度强化学习算法深度确定性策略梯度 (Deep Deterministic Policy Gradient,DDPG)和近端策略优化(Proximal Policy Optimization,PPO)进行改进,以使其更能满足高速公路自动驾驶场景 对于决策模块的要求。对于DDPG算法,本文对其进行针对性改进提出了基 于双评论家及优先回放机制的深度确定性策略梯度算法(Double Critic and Priority Experience Replay Deep Deterministic Policy Gradient,DCPER-DDPG)。 针对Q值过估计导致的驾驶策略效果下降问题,采用了双评论家网络进行优 化。针对演员网络更新时产生的时间差分误差导致算法模型不精准采用延迟更 新方法降低这一影响。针对DDPG算法中随机经验回放导致的采样样本效果 不符合预期和训练速度慢导致的算力和资源损耗,本文采用优先经验回放机制 对其进行改善。
2024-05-29 00:26:53 37.1MB 自动驾驶 强化学习 高速公路 决策规划
1
强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一。它主要用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。强化学习的特点在于没有监督数据,只有奖励信号。 强化学习的常见模型是标准的马尔可夫决策过程(Markov Decision Process, MDP)。按给定条件,强化学习可分为基于模式的强化学习(model-based RL)和无模式强化学习(model-free RL),以及主动强化学习(active RL)和被动强化学习(passive RL)。强化学习的变体包括逆向强化学习、阶层强化学习和部分可观测系统的强化学习。求解强化学习问题所使用的算法可分为策略搜索算法和值函数(value function)算法两类。 强化学习理论受到行为主义心理学启发,侧重在线学习并试图在探索-利用(exploration-exploitation)间保持平衡。不同于监督学习和非监督学习,强化学习不要求预先给定任何数据,而是通过接收环境对动作的奖励(反馈)获得学习信息并更新模型参数。强化学习问题在信息论、博弈论、自动控制等领域有得到讨论,被用于解释有限理性条件下的平衡态、设计推荐系统和机器人交互系统。一些复杂的强化学习算法在一定程度上具备解决复杂问题的通用智能,可以在围棋和电子游戏中达到人类水平。 强化学习在工程领域的应用也相当广泛。例如,Facebook提出了开源强化学习平台Horizon,该平台利用强化学习来优化大规模生产系统。在医疗保健领域,RL系统能够为患者提供治疗策略,该系统能够利用以往的经验找到最优的策略,而无需生物系统的数学模型等先验信息,这使得基于RL的系统具有更广泛的适用性。 总的来说,强化学习是一种通过智能体与环境交互,以最大化累积奖励为目标的学习过程。它在许多领域都展现出了强大的应用潜力。
2024-05-28 23:49:58 5KB 强化学习
1
适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!
2024-05-28 12:49:12 133.66MB 毕业设计
1
参加2014年飞思卡尔杯自己编写的ccd自适应曝光程序。
2024-05-24 21:00:55 629KB
1
该程序为对一路单频信号干扰的滤除,需要滤除多路的话再加入参考信号就行
2024-05-24 17:03:56 1KB MATLAB
1
永磁同步电机无感FOC模型参考自适应(MRAS)转速估计算法simulink仿真模型,模型参考自适应(MRAS)原理、分析及模型搭建说明: 永磁同步电机无感FOC模型参考自适应(MRAS)转速估计算法:https://blog.csdn.net/qq_28149763/article/details/137650453?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22137650453%22%2C%22source%22%3A%22qq_28149763%22%7D
2024-05-24 15:26:26 77KB 电机控制 simulink PMSM
1
基于栅格法构建地图的Q-Learning路径规划python代码
2024-05-23 15:30:40 34KB python 强化学习 路径规划
1
自适应光学快速迭代控制算法研究与实现,介绍了远场光斑尺寸,艾里斑等概念以及自适应光学的基础知识,在此基础上进行算法的设计以及优化
2024-05-22 19:03:16 3.52MB 自适应光学
1
QT widget控件自适应窗口大小,修改比例
2024-05-22 15:35:34 7KB 开发语言
1
(1)在中国A股市场15只股票上的应用 (2)构建投资组合 (3)每日调仓 (4)绘制收益率曲线 (5)PPO算法
2024-05-20 15:27:15 4.29MB python 量化投资 强化学习 投资组合