内容概要:本文档详细介绍了RF-DETR模型在自建数据集上的训练流程及遇到的问题解决方法。首先,训练环境配置要求Python版本不低于3.9,PyTorch版本需2.0以上,具体配置基于Ubuntu系统。接着,对于数据集有特定格式要求,即必须符合COCO数据集格式,若原始数据集为YOLO格式,提供了一段Python代码用于将YOLO格式转换成COCO格式,包括创建对应文件夹结构、调整图像尺寸、转换标注信息等操作。最后,给出了训练RF-DETR模型的具体代码示例,指定了预训练权重路径、数据集目录、训练轮次、批次大小等关键参数。 适合人群:具有一定深度学习基础,尤其是熟悉目标检测领域,并希望了解或使用RF-DETR模型进行研究或项目开发的研究人员和技术人员。 使用场景及目标:①帮助开发者快速搭建适合RF-DETR模型训练的环境;②指导用户按照正确格式准备数据集,特别是从YOLO格式到COCO格式的转换;③提供完整的训练代码,便于用户直接运行并调整参数以适应不同应用场景。
2025-11-17 23:21:26 3KB Python PyTorch 目标检测 detr
1
在IT领域,目标检测是一项关键的技术,特别是在计算机视觉和机器学习中。本数据集专注于船只检测,使用了流行的YOLO(You Only Look Once)算法,这是一种实时的目标检测系统,以其高效性和准确性而闻名。 我们需要理解YOLO算法。YOLO是一种基于深度学习的一阶段目标检测方法,它将目标检测问题转化为一个回归问题,直接预测边界框和类别概率。与两阶段方法(如R-CNN系列)相比,YOLO避免了繁重的候选区域生成步骤,从而实现了更快的检测速度。 该数据集包含5085张图片,每张图片都已使用YOLO格式进行标注。YOLO的标注文件是文本文件,通常与图像文件同名,但扩展名为.txt。这些文件包含了图像中每个目标的坐标(边界框)以及对应的类别ID。在本例中,类别ID为0,表示所有标注的对象都是船只。YOLO的边界框用四个数值表示:(x, y, width, height),其中(x, y)是边界框左上角的坐标,width和height是边界框的宽度和高度,均相对于图像的宽度和高度。 对于训练YOLO模型,这些标注数据至关重要。模型会学习从输入图像中识别出这些特征,并预测出类似的边界框。数据集的大小——5085张图片——对于训练一个准确的模型来说是相当充足的,因为深度学习模型通常需要大量数据来学习复杂的模式。 在训练过程中,通常会将数据集分为训练集、验证集和测试集,以便监控模型的性能并防止过拟合。训练集用于教会模型识别目标,验证集用于调整超参数和模型结构,而测试集则在模型最终确定后用于评估其泛化能力。 "labels"目录可能包含了所有5085个YOLO格式的标注文件,而"images"目录则存储了相应的图像文件。为了训练YOLO模型,开发人员需要将这两个目录与YOLO的训练脚本结合,设置正确的参数,如学习率、批大小、训练迭代次数等。 此外,预处理步骤也很重要,包括图像的缩放、归一化以及可能的数据增强技术,如翻转、旋转和裁剪,以增加模型的鲁棒性。训练完成后,模型可以应用于实时视频流或新的图像,自动检测并标记出船只。 这个"船只数据集yolo目标检测"提供了训练YOLO模型进行船只检测所需的一切资源。通过理解和应用这些知识,开发者可以创建一个能够有效地在各种场景中识别船只的AI系统,这对于海洋监测、安全监控和自动驾驶船舶等领域都有潜在的应用价值。
2025-11-16 14:34:11 830.25MB 数据集 目标检测
1
本文详细介绍了如何将YOLO11训练好的.pt权重文件转换为ONNX模型,并使用ONNX模型进行目标检测推理的全过程。文章首先讲解了导出ONNX模型的两种方法(简洁版和专业版),包括参数设置和注意事项。接着详细阐述了ONNX模型推理的完整流程,包括预处理、推理、后处理和可视化四个关键步骤。其中预处理部分涉及图像读取、尺寸调整和归一化;推理部分使用ONNXRuntime加载模型;后处理部分包括置信度过滤、边界框调整和非极大值抑制;可视化部分则展示了如何绘制检测结果。最后提供了完整的Python实现代码,涵盖了类别映射定义、参数解析和结果保存等功能,为开发者提供了从模型导出到实际应用的一站式解决方案。 在深度学习领域中,YOLO(You Only Look Once)模型因其出色的实时目标检测性能而备受瞩目。随着ONNX(Open Neural Network Exchange)的推出,跨平台和跨框架的模型部署变得更为便捷。本篇文章深入探讨了YOLO11模型从.pt权重文件到ONNX格式的转换,以及如何利用转换后的ONNX模型进行高效的推理过程。 文章介绍了两种导出YOLO11模型为ONNX格式的方法。简洁版方法适用于快速转换,但可能缺乏一些专业定制化的调整;专业版方法则提供了更多的灵活性和参数调整选项,以满足特定的需求。在转换过程中,需要注意模型的输入输出节点设置,以及如何正确处理YOLO模型特有的结构特征。此外,文章强调了转换过程中的注意事项,比如核对模型权重和结构的一致性,确保模型转换前后的性能不变。 接下来,文章详细描述了使用ONNX模型进行目标检测的完整流程。这包括了四个关键步骤:预处理、推理、后处理和可视化。在预处理环节,要处理的主要是输入图像,包括读取图像文件、调整图像尺寸到模型所需的大小,并进行归一化处理,以确保输入数据符合模型训练时的格式。推理步骤则涉及加载转换后的ONNX模型,并使用ONNX Runtime执行推理操作,得出目标的预测结果。后处理步骤对推理结果进行分析,其中包含了置信度过滤、边界框的精确调整,以及应用非极大值抑制算法去除重叠的检测框,得到最终的目标检测结果。在可视化环节,如何将检测结果绘制到原始图像上,是向用户直观展示模型检测能力的重要步骤。 文章最后提供了完整的Python代码实现,这些代码涵盖了从类别映射定义到参数解析,再到结果保存的整个过程。代码中包含了必要的函数和类,方便开发者快速理解和集成,从而能够实现从模型的导出到最终应用的无缝衔接。 在目标检测的多个环节中,YOLO模型之所以脱颖而出,得益于其简洁的设计理念和高效的检测速度。将YOLO11模型部署为ONNX格式,意味着开发者可以在不同的硬件和软件平台上运行模型,不受特定深度学习框架的限制。这样的操作不仅降低了模型部署的复杂性,还扩展了模型的应用场景,特别是在对推理速度有较高要求的实时系统中。 YOLO11的性能在众多模型中依然保持竞争力,而ONNX的介入则进一步加速了该模型的普及和应用。开发者可以利用现成的工具和代码,快速实现一个高性能的目标检测系统。这些系统的应用领域非常广泛,从安防监控到自动驾驶,从工业检测到公共安全等。可以说,本文为开发者提供了一套完整的从理论到实践,再到实际部署的解决方案,极大地促进了目标检测技术的推广和应用。
2025-11-14 11:36:11 2.45MB 目标检测 模型推理
1
Python开发基于深度学习RNN(循环神经网络)空中目标意图识别系统(含完整源码+数据集+程序说明及注释).zip 【项目介绍】 程序为使用RNN循环神经网络进行意图识别的程序 程序设计语言为Python 3.7.6;开发环境为Anaconda。循环神经网络模型由Python的keras 2.3.0库实现。 数据集为:SCENARIO_DATA_UTF8.zip 代码可以生成损失函数曲线,精确度曲线; 可自定义修改梯度下降方法,损失函数。 【特别强调】 1、项目资源可能会实时更新,解决一些未知bug; 2、非自己账号在csdn官方下载,而通过第三方代下载,不对资源作任何保证,且不提供任何形式的技术支持和答疑!!! 百分百可运行,可远程部署+指导!
2025-11-13 23:24:07 4.27MB python 深度学习 数据集
1
剪刀石头布检测数据集是一个面向目标检测任务的标注数据集,它包含1973张图片,这些图片被划分为三个类别,即剪刀、石头和布。数据集采用Pascal VOC格式和YOLO格式,提供了对应的标注文件,包括.xml文件和.txt文件,这些文件与.jpg图片一一对应。 数据集中的图片数量与标注文件数量都是1973个,说明每张图片都有相应的标注信息。在标注过程中,使用了名为labelImg的工具,它是广泛应用于目标检测任务的图像标注软件。在标注规则方面,该数据集采用矩形框来标注图片中的对象,这种做法在目标检测中是常见的,因为矩形框可以清晰地定义出目标对象在图片中的位置和尺寸。 标注类别总数为3,分别对应着三种手势:剪刀(bu)、石头(jiandao)、布(shitou)。每一个类别中的目标对象数量也有所提及,其中“剪刀”类别的目标框数为609个,“石头”为679个,“布”为685个。标注的总框数为1973,这表明数据集中的每张图片都至少包含一个矩形框,框中是对应该图片中手势的位置。 此外,数据集的标注类别名称分别用中文进行了命名,即“剪刀”、“石头”和“布”,这可能是为了便于理解标注者的意图,也可能是为了适应某些需要中文标签的特定应用场景。在数据集的使用方面,虽然提供了图片及其标注,但是制作者明确声明,他们不对由此数据集训练得到的模型或权重文件的精度作任何保证。这提示使用者,在应用数据集进行模型训练之前需要仔细检查标注的准确性,并可能需要进一步的数据清洗和增强步骤。 这份数据集非常适合用于机器学习和计算机视觉中目标检测模型的训练和验证,尤其是那些涉及手势识别、图像分类和实时对象检测的应用。由于其涵盖的手势种类有限,因此它也是一个入门级别的数据集,便于研究人员和开发者测试和调试他们的算法。 数据集的提供者没有提及任何特定的版权信息或使用限制,这可能意味着该数据集可以被广泛使用于学术研究和商业开发。不过,对于任何商业用途,建议还是先确认数据集的具体使用条款,以避免潜在的法律问题。此外,考虑到数据集的标注质量直接关系到最终模型的性能,使用者应当对标注进行仔细的审查和必要的修正,确保数据集的高质量能够帮助模型训练达到预期的效果。
2025-11-13 17:52:33 2.38MB 数据集
1
内容概要:本文详细记录了DINOv3模型的测试过程,包括预训练模型的下载、环境配置、模型加载方式以及在不同下游任务(如图像分类、目标检测、图像分割)中的应用方法。重点介绍了如何冻结DINOv3的backbone并结合任务特定的头部结构进行微调,同时对比了PyTorch Hub和Hugging Face Transformers两种主流模型加载方式的使用场景与优劣,并提供了显存占用数据和实际代码示例,涵盖推理与训练阶段的关键配置和技术细节。; 适合人群:具备深度学习基础,熟悉PyTorch框架,有一定CV项目经验的研发人员或算法工程师;适合从事视觉预训练模型研究或下游任务迁移学习的相关从业者。; 使用场景及目标:①掌握DINOv3模型的加载与特征提取方法;②实现冻结backbone下的分类、检测、分割等下游任务训练;③对比Pipeline与AutoModel方式的特征抽取差异并选择合适方案;④优化显存使用与推理效率。; 阅读建议:此资源以实操为导向,建议结合代码环境边运行边学习,重点关注模型加载方式、头部设计与训练策略,注意版本依赖(Python≥3.11,PyTorch≥2.7.1)及本地缓存路径管理,便于复现和部署。
2025-11-13 17:29:00 679KB PyTorch 图像分割 目标检测 预训练模型
1
在深度学习领域,目标检测是计算机视觉中的一个重要分支,它旨在识别图像中的物体并给出物体的类别和位置。随着研究的深入和技术的发展,目标检测模型不断进化,出现了许多具有先进性能的模型,RF-DETR模型便是其中之一。 RF-DETR模型全称为“Random Feature DETR”,是一种结合了Transformer架构的目标检测模型。DETR(Detection Transformer)是其基础,其核心思想是将目标检测问题转化为集合预测问题,使用Transformer的编码器-解码器结构进行端到端的训练。在RF-DETR模型中,"Random Feature"(RF)技术被引入以提高模型的泛化能力和检测效率。 预训练模型是深度学习中一种常见的技术,它指的是在一个大型数据集上预先训练一个模型,然后将这个模型作为基础应用到特定的任务中,以此加快模型训练速度并提升模型性能。rf-detr-base预训练模型就是基于RF-DETR架构,并在大型数据集上进行预训练的模型。该模型可以被用来在特定数据集上进行微调,以适应新的目标检测任务。 预训练模型特别适合那些网络连接条件不佳,或者由于安全和隐私政策而无法直接访问互联网的离线环境。对于开发人员而言,即使在GitHub访问速度较慢的情况下,他们也可以下载预训练模型并在本地进行模型训练和评估,从而避免了网络依赖问题。 rf-detr-base-coco.pth是rf-detr预训练模型的一种文件格式,通常以.pth结尾的文件是PyTorch框架中的模型参数文件。这种文件包含了模型的权重和结构信息,是进行模型微调和推理时不可或缺的资源。通过使用这样的预训练模型文件,开发人员可以节省大量的时间和资源,并在较短的时间内得到较好的目标检测结果。 rf-detr-base预训练模型的推出,为那些寻求高精度目标检测解决方案的开发人员提供了一个强有力的工具。它的随机特征技术和预训练机制使得它在目标检测领域处于技术前沿,同时也为离线环境中的模型训练提供了便利。
2025-11-13 10:22:58 325.51MB 目标检测 预训练模型 深度学习
1
yolov5/yolov8/yolo11/yolo目标检测数据集,光伏面板红外图像热斑缺陷检测数据集,12736张标注好的数据集(3类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用 3个类别:金色斑点、浅金色斑点、阴影。 图像分辨率为大分辨率RGB图片。 效果参考展示:https://blog.csdn.net/m0_37302966/article/details/151869402 更多资源下载:https://blog.csdn.net/m0_37302966/article/details/146555773
2025-11-10 17:10:10 721.34MB yolov5数据集 yolo数据集
1
MOMSA(Multi-objective Mantis Search Algorithm)是一种用于解决多目标优化问题的智能算法,它是在群智能算法的研究领域中涌现出来的一项创新技术。多目标优化问题在现实世界的决策过程中非常常见,尤其是在需要同时优化两个或多个相互冲突的目标时。这类问题要求在多个目标之间找到平衡解,即所谓的Pareto最优解集。 多目标优化算法的设计和实现一直是计算智能领域的热点话题。MOMSA算法的设计灵感来自于一种名为螳螂的昆虫的生活习性,特别是在其捕食行为中的精确性和效率。这种算法通过模仿螳螂在捕食时的搜索策略来探索解空间,以此寻找满足多目标要求的优质解集。在算法中,每个个体都代表了一个潜在的解决方案,并通过群体的协同作用来优化目标。 MOMSA算法中,个体通常被赋予不同的角色和行为模式,它们在解空间中动态地调整自己的行为,以期发现全局最优或近似全局最优的Pareto前沿。算法的核心机制包括了信息共享、种群更新和环境选择等。信息共享让种群中的个体能够根据其他个体的经验来调整自己的搜索方向和位置,从而加速收敛。种群更新机制则确保了种群的多样性,防止算法过早地陷入局部最优。环境选择策略则负责在每次迭代后从当前种群中选择出表现优异的个体,以形成下一代种群。 MOMSA算法特别适合处理那些目标之间存在冲突和竞争的多目标问题,例如工程设计、生产调度、资源分配等领域。此外,算法的性能在很大程度上取决于参数的设置,如种群大小、迭代次数、信息共享的程度等,因此在实际应用中往往需要对这些参数进行细致的调整,以达到最佳的优化效果。 在实际应用中,MOMSA算法的实现需要一个有效的计算平台来支持复杂的运算和大量的迭代。Matlab作为一种广泛使用的数值计算环境,提供了强大的工具箱和便捷的编程接口,非常适合用来开发和测试多目标优化算法。Matlab的矩阵操作能力和丰富的数学函数库使得算法的编码和调试过程更加高效。 MOMSA算法的代码实现通常包括初始化种群、个体适应度评估、环境选择、种群更新等多个模块。在Matlab环境下,这些模块可以被封装在函数或脚本中,方便调用和修改。此外,Matlab的可视化功能也可以用于监控算法的运行过程和最终解集的分布情况。 MOMSA算法是一种高效且具有创新性的多目标优化算法,它结合了群智能搜索策略和Matlab强大的计算能力,为解决复杂的多目标优化问题提供了一种有效的途径。算法的设计和优化过程需要充分考虑多目标之间的权衡和种群多样性的维持,而Matlab平台的使用则大大提高了算法实现的便捷性和效果的可视化展示。
2025-11-07 12:09:03 14KB matlab 多目标优化
1
内容概要:本文介绍了基于多目标麋鹿群优化算法(MO【盘式制动器设计】ZDT:多目标麋鹿群优化算法(MOEHO)求解ZDT及工程应用---盘式制动器设计研究(Matlab代码实现)EHO)求解ZDT测试函数集,并将其应用于盘式制动器设计的工程实践中,相关研究通过Matlab代码实现。文中详细阐述了MOEHO算法在处理多目标优化问题上的优势,结合ZDT标准测试函数验证算法性能,并进一步将该算法用于盘式制动器的关键参数优化设计,以实现轻量化、高效制动和散热性能之间的多目标平衡。研究展示了从算法设计、仿真测试到实际工程应用的完整流程,体现了智能优化算法在机械设计领域的实用价值。; 适合人群:具备Matlab编程基础,从事机械设计、优化算法研究或智能计算相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①学习多目标优化算法(特别是MOEHO)的基本原理与实现方法;②掌握ZDT测试函数在算法性能评估中的应用;③了解如何将智能优化算法应用于实际工程设计问题(如盘式制动器设计)中的多目标权衡与参数优化; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点理解算法实现细节与工程问题的数学建模过程,同时可通过修改参数或替换优化算法进行对比实验,深化对多目标优化技术的理解与应用能力。
1