LPDDR 内存的主要参数介绍 CAS Latency (CL) 定义: CAS Latency 是指从内存接收到列地址到开始输出数据所需的时间。它表示了内存响应请求的延迟。 例子: 如果 CL 为 17,意味着内存在接收到列地址请求后,需要 17 个时钟周期才能开始数据传输。更低的 CL 通常意味着更快的内存响应。 RAS to CAS Delay (tRCD) 定义: tRCD 是从行地址选通信号(RAS)有效到列地址选通信号(CAS)有效之间的延迟时间。 例子: tRCD = 18 表示从行地址选中到列地址选中,需要 18 个时钟周期的延迟。这影响了内存的整体访问时间。 Row Precharge Time (tRP) 定义: tRP 是关闭当前活动行并准备下一行的时间。它决定了内存在访问不同行之间的切换时间。 例子: tRP = 20 表示从关闭当前行到准备好下一行需要 20 个时钟周期。这是内存行切换时的一个重要延迟参数。 Row Active Time (tRAS) 定义: tRAS 是一个内存行保持激活状态的最小时间,确保行数据能够被正确地读取或写入。 例子: tRAS ### LPDDR3、LPDDR4 与 LPDDR5 参数详解 #### 1. 引言 LPDDR(Low Power Double Data Rate)作为一种低功耗、高性能的内存技术,在移动设备、嵌入式系统及高性能计算平台中发挥着关键作用。随着技术的发展,LPDDR经历了从LPDDR3到LPDDR4,再到LPDDR5的迭代升级,在数据传输速率、功耗控制及整体性能方面实现了显著提升。本文旨在详细介绍这些不同版本LPDDR内存的主要技术参数、数据线与信号线的功能,以及它们在制造工艺上的差异。 #### 2. LPDDR 内存的主要参数介绍 ##### 2.1 CAS Latency (CL) **定义**:CAS Latency(CL)指的是从内存接收到列地址到开始输出数据所需的时间,即内存响应请求的延迟。 **例子**:如果 CL 设置为 17,则表示内存在接收到列地址请求后,需要经过 17 个时钟周期才能开始数据传输。一般来说,更低的 CL 值意味着更快的内存响应速度。 ##### 2.2 RAS to CAS Delay (tRCD) **定义**:tRCD 是指从行地址选通信号(RAS)有效到列地址选通信号(CAS)有效之间的延迟时间。 **例子**:当 tRCD 被设置为 18 时,表示从行地址选中到列地址选中,需要经过 18 个时钟周期的延迟。这一参数直接影响了内存的整体访问时间。 ##### 2.3 Row Precharge Time (tRP) **定义**:tRP 定义了关闭当前活动行并准备下一行的时间,即内存在访问不同行之间的切换时间。 **例子**:假设 tRP 为 20,则意味着从关闭当前行到准备好下一行需要 20 个时钟周期。这个参数对于内存行切换时的延迟至关重要。 ##### 2.4 Row Active Time (tRAS) **定义**:tRAS 是一个内存行保持激活状态的最小时间,以确保行数据能够被正确地读取或写入。 **例子**:当 tRAS 设定为 42 时,表示内存行需要保持激活状态至少 42 个时钟周期,以确保数据稳定传输。 ##### 2.5 Row Cycle Time (tRC) **定义**:tRC 指的是从一个内存行激活到同一个行下一个激活的最短时间间隔,综合了 tRAS 和 tRP。 **例子**:例如,tRC 设定为 60,这意味着一个行操作周期需要 60 个时钟周期,从而影响内存的行循环速率。 ##### 2.6 数据传输速率 (Data Rate) **定义**:数据传输速率是指内存每秒钟可以传输的数据位数,通常以每秒兆位(Mbps)为单位。 **例子**:如 LPDDR4 的数据速率为 4266Mbps,意味着每秒可以传输 4266 百万位数据。数据速率越高,传输速度越快。 ##### 2.7 工作电压 (Operating Voltage) **定义**:工作电压是指内存正常工作所需的电压水平。较低的工作电压可以减少功耗和产生的热量。 **例子**:LPDDR3 的工作电压为 1.2V,而 LPDDR4 降低到了 1.1V,最新的 LPDDR5 更是可以达到 1.05V 或更低。这有助于进一步降低设备的整体能耗。 #### 3. 数据线和信号线详解 ##### 3.1 DQS(Data Strobe) **定义**:DQS 是数据选通信号线,用于同步数据传输的时钟信号,确保数据在正确的时刻被发送或接收。 **作用**:DQS 信号与数据线同步工作,提供数据传输的时间基准,减少数据错误,提高传输效率。 **例子**:在 DDR 内存中,DQS 通常是一个差分信号对,确保数据传输在时钟的上升和下降沿都能准确同步。 ##### 3.2 DQM(Data Mask) **定义**:DQM 是数据屏蔽信号线,用于在写操作时屏蔽无效数据。 **作用**:DQM 信号可以屏蔽特定的数据位,防止无效数据写入内存。适用于部分写入操作,保护其他数据位不被覆盖。 **例子**:写入数据时,如果 DQM 对应位被置位,该数据位将被屏蔽,原有数据不会被覆盖。 ##### 3.3 CK(Clock) **定义**:CK 是时钟信号线,为内存芯片提供必要的时钟信号,用于同步内存的操作。 **作用**:CK 信号是内存正常工作的基础,没有稳定的时钟信号,内存无法正确执行读写操作。 **例子**:CK 信号通过时钟信号发生器产生,并且在整个内存模块中传播,确保所有内存颗粒都能同步运行。 #### 4. LPDDR4 和 LPDDR5 的新增功能 ##### 4.1 LPDDR4 新增功能 - **更高的数据传输速率**:相比 LPDDR3,LPDDR4 提供了更高的数据传输速率,最高可达 4266Mbps。 - **更高效的电源管理**:引入了多种新的电源管理模式,以进一步降低功耗。 - **支持多通道操作**:支持双通道或四通道操作模式,提高了带宽和性能。 ##### 4.2 LPDDR5 新增功能 - **更高的数据传输速率**:LPDDR5 的数据传输速率比 LPDDR4 更高,最高可达 6400Mbps。 - **改进的电源管理**:进一步优化了电源管理机制,降低了工作电压,减少了功耗。 - **增强的错误校正能力**:采用了更强的错误检测与纠正机制,提高了数据完整性。 - **动态电压和频率调节**:支持动态调整电压和频率,以适应不同的工作负载需求,实现更高效的能效比。 #### 5. 制造工艺简介 ##### 5.1 LPDDR3 制造工艺 - **采用 20nm 制程**:早期 LPDDR3 内存大多基于 20nm 制造工艺。 - **功耗控制**:虽然功耗控制较好,但与后续版本相比仍有较大差距。 ##### 5.2 LPDDR4 制造工艺 - **采用 10nm 制程**:LPDDR4 内存普遍采用 10nm 或更先进的制程技术,有效降低了功耗。 - **更高的集成度**:得益于更小的制程,LPDDR4 能够实现更高的集成度和更好的性能。 ##### 5.3 LPDDR5 制造工艺 - **采用 10nm 或更先进制程**:最新的 LPDDR5 内存采用了 10nm 或更先进的制程技术,比如 7nm 或 5nm。 - **极低功耗设计**:通过先进的制程技术和设计优化,LPDDR5 实现了极低的功耗水平。 #### 6. 总结 LPDDR3、LPDDR4 和 LPDDR5 在数据传输速率、功耗控制和性能方面都进行了显著的改进。随着制程技术的进步,新一代 LPDDR 内存不仅提供了更高的性能,还大幅降低了功耗,成为现代移动设备和高性能计算平台不可或缺的一部分。通过了解这些内存的关键参数和技术特性,可以更好地选择适合自己应用需求的产品,并利用其优势来优化系统的整体性能和能效。
2024-08-30 10:23:10 184KB 网络 网络
1
STM32 F103C8T6是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M3内核的微控制器,广泛应用于各种嵌入式系统设计。在这个学习笔记中,我们将关注如何使用STM32 F103C8T6通过IIC(Inter-Integrated Circuit)通信协议与MLX90614红外非接触温度计进行数据交互。 我们需要了解IIC通信协议。IIC是一种多主机、双向二线制同步串行接口,由Philips(现NXP)公司在1982年开发,主要用于在系统内部或不同设备之间传输数据。它的主要特点是仅需要两条信号线——SDA(Serial Data Line)和SCL(Serial Clock Line),并支持主从模式,可以连接多个从设备。 MLX90614是一款高精度的红外非接触温度传感器,它能测量环境和物体的表面温度,并以数字方式输出数据。该传感器内置了一个测温元件和一个微处理器,能够计算温度并存储在内部寄存器中。通过IIC接口,我们可以读取这些寄存器的值,从而获取温度数据。 配置STM32 F103C8T6与MLX90614的IIC通信,你需要做以下几步: 1. **GPIO配置**:设置STM32的IIC SDA和SCL引脚为复用开漏输出模式,通常为PB6(SCL)和PB7(SDA)。 2. **时钟配置**:为IIC外设分配合适的时钟源,如APB1的时钟,根据MLX90614的数据手册设置合适的时钟速度。 3. **初始化IIC**:配置IIC控制器,包括启动条件、停止条件、应答位、数据传输方向等参数。 4. **寻址MLX90614**:发送IIC起始信号,然后写入MLX90614的7位设备地址(加上读/写位),等待应答。 5. **读写操作**:根据需求选择读或写操作。写操作时,发送寄存器地址,然后写入数据;读操作时,先发送寄存器地址,然后读取返回的数据,注意在读取数据后需要发送一个应答位,但最后读取的数据不需要应答。 6. **错误处理**:在通信过程中,需要检查并处理可能发生的错误,如超时、数据不匹配等。 7. **结束通信**:完成数据交换后,发送IIC停止信号,释放总线。 理解以上步骤后,你可以使用STM32的标准库或HAL库来实现IIC通信功能。标准库提供底层的寄存器级操作,而HAL库则提供了更高级别的抽象,使代码更易读、易移植。 在实际应用中,可能还需要考虑一些额外因素,如信号线的上拉电阻、通信速率与距离的平衡、抗干扰措施等。同时,要确保MLX90614的电源和接地正确连接,以及其工作电压与STM32的兼容性。 总结来说,这个学习笔记主要涵盖了STM32 F103C8T6如何通过IIC协议与MLX90614红外非接触温度计进行通信的详细过程。通过对IIC协议的理解和STM32的配置,可以实现从温度计获取温度数据的功能,这对于开发涉及环境监测、智能家居等领域的产品非常有用。
2024-08-29 14:14:17 6.04MB stm32 网络 网络
1
**正文** Qi2无线充电协议是目前无线充电领域的一个重要标准,由无线充电联盟(Wireless Power Consortium,简称WPC)制定。这个协议是Qi标准的最新版本,旨在提升无线充电的效率、安全性和互操作性,使得不同设备之间能够更方便地进行无线充电。在本文中,我们将深入探讨Qi2协议的核心概念、技术特点以及与前代标准的差异。 Qi2协议在兼容性方面进行了重大改进,确保了不同设备间更广泛的兼容性。它不仅支持手机、平板电脑等消费电子设备,还扩展到了智能手表、耳机和其他小型可穿戴设备。此外,Qi2协议还考虑了电动车等大型设备的无线充电需求,推动了无线充电技术在更多领域的应用。 技术上,Qi2协议引入了多点对多点(MPP,Multi-Point-to-Point)传输模式,允许一个充电垫同时为多个设备充电,提高了充电效率并减少了资源浪费。这种模式下,系统可以根据每个设备的功率需求动态调整能量分配,确保所有设备都能得到合适的充电速度。 Qi2协议在安全性方面也有显著提升。它增加了加密功能,保护用户的隐私和数据安全,防止未经授权的设备接入充电网络。同时,协议还规定了严格的充电安全标准,如过热、过流保护,以防止设备在充电过程中受到损害。 在测试和验证方面,压缩包中的“Qi-v2.0-mpp-prx-compliance-tests.pdf”文件可能包含了Qi2协议的合规性测试规范。这些测试涵盖了发射器(Transmitter)和接收器(Receiver)之间的通信协议、功率传输性能、安全特性等多个方面,确保设备符合Qi2标准的要求,从而保证用户可以安全、高效地使用无线充电设备。 总结来说,Qi2无线充电协议是无线充电技术的一次重要升级,它通过增强兼容性、提升效率和安全性能,为用户提供了更好的充电体验。了解并掌握这一协议,对于从事无线充电设备开发、测试和应用的人员至关重要,它将有助于推动无线充电技术的发展和普及。而“Qi-v2.0-mpp-prx-compliance-tests.pdf”文档则为深入理解和实施Qi2协议提供了关键的参考依据。
2024-08-29 10:13:56 3.38MB qi协议 无线充电
1
《天线RCS仿真结构项与模式项》 在雷达散射截面(Radar Cross Section, RCS)的研究中,天线的设计与分析是一项至关重要的任务。RCS是衡量一个目标在雷达波照射下反射能量大小的参数,对于雷达探测、隐身技术等领域具有深远影响。本文将深入探讨天线RCS仿真中的结构项和模式项,以及如何通过计算机辅助设计软件如CST进行相关分析。 单元天线性能仿真是整个RCS分析的基础。一个良好的天线设计需要考虑多个因素,包括天线尺寸、频率范围、材料属性以及端口特性等。例如,天线尺寸会影响其工作频段和辐射效率;频率设置决定了天线的工作模式和覆盖范围;背景材料和单位选择则会改变电磁波的传播特性;材料属性如介电常数和磁导率直接影响天线的辐射性能;而边界条件的设定则用于模拟实际环境,确保仿真结果的准确性。 结构项RCS仿真关注的是天线结构对电磁波反射的影响。结构项通常包括天线的几何形状、表面粗糙度、结构细节等。这些因素决定了雷达波与天线相互作用的方式,进而影响RCS值。例如,光滑的表面会导致较低的RCS,而粗糙表面由于散射效应会增大RCS。在CST软件中,可以通过设置全局网格和局部网格来精确模拟这些结构特征,优化网格密度以获取更精确的仿真结果。 接着,模式项RCS涉及到天线辐射模式对RCS的贡献。每个天线都有特定的辐射模式,即电磁场的分布方式。这些模式决定着天线辐射能量的方向性和强度,从而影响RCS的大小。在阵列天线中,单个单元天线的模式项RCS需要被集成到阵列的整体RCS中。这可以通过计算每个单元天线的辐射模式,然后利用阵列因子来合成阵列的远场方向图,进一步得到阵列天线的RCS。 在CST中,可以方便地导入天线模型,设置频率、材料属性、边界条件,并计算端口阻抗。通过设置远场监视器,可以得到天线的辐射特性,包括主瓣宽度、旁瓣水平等。此外,设置全局和局部网格能够保证计算精度,同时减少计算资源的消耗。保存文件以便后续的分析和优化。 总结来说,天线RCS仿真涉及了从单元天线性能到阵列天线RCS的全过程,包括结构项和模式项的影响。通过CST等高级电磁仿真工具,我们可以精确预测和控制天线的RCS,这对于雷达系统设计、隐身技术研究以及无线通信系统的优化具有重要意义。
2024-08-27 17:18:54 2.04MB 学习资料
1
### 三菱FX3U系列PLC编程学习笔记 #### 第一章:PLC基础应用介绍 **1.1 PLC输入输出接线** - **颜色标识**:正极为棕色,负极为蓝色,信号线通常为黑色。 - **接线类型**: - **漏型接法(NPN)**:电流从输出端流出,适用于NPN类型的传感器或开关。 - **源型接法(PNP)**:电流从输出端流入,适用于PNP类型的传感器或开关。 **1.2 行程开关接线** - **漏型接线**:行程开关连接到PLC的输入端,外部电源的负极连接到公共端。 - **源型接线**:行程开关连接到PLC的输入端,外部电源的正极连接到公共端。 **1.3 外部电源接线** - **漏型接法**:外部电源的负极连接到PLC的公共端。 - **源型接法**:外部电源的正极连接到PLC的公共端。 **1.4 输出端接线** - **小灯接线**:直接将小灯连接到输出端。 - **中间继电器接线**:通过中间继电器控制更大的负载。 - **交流接触器接线**:通过交流接触器控制电机或其他大功率设备。 #### 第二章:三菱FX3U基础介绍 **2.1 编程语言及软元件介绍** - **2.1.1 编程语言** - **指令表(IL)**:类似于汇编语言,易于编写但不太直观。 - **梯形图(LAD)**:类似于传统的继电器电路,直观且易于接受。 - **顺序功能图(SFC)**:以流程为主线,清晰有序,弥补了梯形图在顺序控制方面的不足。 - **功能块图(FBD)**:适用于复杂系统的控制逻辑设计,具有良好的可视化效果。 - **结构化文本(ST)**:类似于BASIC或C语言,适合于高级编程,但要求操作者具备一定的编程能力。 - **2.1.2 PLC软元件介绍** - **输入继电器(X)**:编号为X000至八进制编号。 - **输出继电器(Y)**:编号为Y0000至八进制编号。 - **辅助继电器(M)**:编号为M0至十进制编号。 - **定时器(T)**:编号为T0起始。 - **计数器(C)**:编号为C0起始。 - **数据寄存器(D)**:编号为D0起始。 - **其他软元件**:状态(S),变址寄存器(V、Z),指针(P、I),高速计数器(C235~)。 **2.2 特殊辅助继电器** - **2.2.1 触点利用型** - **M8000**:运行监视,PLC运行时为ON,停止时为OFF。 - **M8002**:初始化脉冲,仅在PLC启动的第一个扫描周期为ON。 - **M8011~M8014**:分别为10ms、100ms、1s、1min的时钟脉冲。 - **M8005**:电池电压降低时变为ON,提示更换电池。 - **2.2.2 线圈驱动型** - **M8030**:电池电压降低LED熄灭。 - **M8033**:PLC停止后,输出继电器状态保持不变。 - **M8034**:禁止所有输出。 - **M8039**:根据D8039指定的时间进行工作。 #### 第三章:指令入门应用 **3.1 位指令应用** - **3.1.1 边沿触发指令** - **|↑|**:上升沿触发。 - **|↓|**:下降沿触发。 - **3.1.2 置位复位指令** - **SET**:无需自锁即可保持状态。 - **RSET**:复位指令。 - **ZRST**:连续复位多个元件。 **3.2 定时器与计数器指令** - **3.2.1 定时器** - **通电延时定时器**:通电后延时一定时间后输出。 - **断电延时定时器**:断电后延时一定时间后输出。 - **3.2.2 计数器** - **增计数器**:每次输入增加时计数值增加。 - **减计数器**:每次输入增加时计数值减少。 #### 第四章:基本指令的应用 **4.1 数据传输与转换** - **4.1.1 MOV传送指令** - **16位MOV**:将16位的数据从源地址传送到目标地址。 - **32位DEMOV**:将32位的数据从源地址传送到目标地址。 - **4.1.2 BCD转换** - **BCD指令**:将二进制数转换为BCD码。 - **BIN指令**:将BCD码转换为二进制数。 **4.2 四则运算指令应用** - **ADD**:加法指令。 - **SUB**:减法指令。 - **MUL**:乘法指令。 - **DIV**:除法指令。 **4.3 触点比较与比较指令** - **CMP**:比较两个数值大小,并根据比较结果输出相应的触点状态。 - **ZCP**:三个数值之间的比较,当第三个数值介于前两个数值之间时,输出为ON。 **4.4 时钟指令应用** - **TRD**:读取内部时钟数据。 - **年月日时分秒星期**:分别对应D0至D6中的数据。 - **HTOS**:将小时、分钟、秒的数据转换为时间戳格式。 以上内容涵盖了三菱FX3U系列PLC的基础知识和常用指令的应用方法,对于初学者来说是非常宝贵的学习资料。通过学习这些基础知识,可以帮助理解和掌握PLC的工作原理和编程技巧,为进一步深入学习和实践打下坚实的基础。
2024-08-27 14:35:18 41.95MB 编程语言
1
准比例微分(PD)控制器,也称为准比例积分微分(PR)控制器,是一种常见的控制算法,常用于自动化系统和过程控制中。它结合了比例控制器的即时响应和微分控制器对未来误差的预测能力,但不包含积分部分,因此避免了积分饱和和超调等问题。在数字信号处理器(DSP)和单片机中实现准PR控制器,可以有效地提高系统的稳定性和控制精度。 在提供的"myPR.c"和"myPR.h"文件中,我们可以预见到一个已经封装好的准PR控制器函数。通常,这样的函数会接受几个关键参数来定义控制器的行为: 1. **Kp(比例增益)**:这是控制器对当前误差的响应程度。比例增益越大,控制动作越剧烈,系统的响应速度更快,但也可能增加系统的振荡。 2. **Kr(微分增益)**:微分增益决定了控制器对误差变化率的反应。微分作用有助于提前预测误差并减少超调,改善系统的动态性能。 3. **Ts(采样时间)**:这是控制系统采样的周期,决定了控制器更新其输出的频率。合适的采样时间对于保证系统稳定性至关重要。 4. **wc(截止频率)**:这是微分部分的截止频率,决定了微分作用的强度和范围。过高可能会导致系统不稳定,过低则可能减弱微分效果。 5. **wo(自然频率)**:与系统的固有频率有关,用于调整控制器的响应特性,确保系统在期望的频率范围内工作。 在TI的SOLAR库中未找到此函数,意味着这可能是一个自定义实现,适用于特定的应用场景或为了满足特殊的需求。用户可能需要自行编译和测试这个函数,以适应他们的硬件平台和控制任务。 在实际应用中,设计和调整这些参数是一个迭代过程,通常通过模拟或实地试验来完成。开发者需要考虑系统的稳定性、响应速度、抗干扰能力和目标性能指标。在单片机或DSP中实现准PR控制器时,还需要注意计算资源的限制,如处理速度、内存大小等,确保代码优化且能够在有限的硬件资源下高效运行。 "myPR"代码库提供了一个方便的工具,使开发者能够快速集成准PR控制器到他们的控制系统中,通过调整参数来优化控制性能。无论是用于学术研究还是工业应用,理解并熟练掌握这种控制器的原理和应用都将极大地提升项目实施的成功率。
2024-08-26 17:12:31 957B 学习笔记
1
CRME标准版 v5.3.0更新说明文档 功能新增 后台支持所有功能设置搜索 事业部:员工可以后台添加,员工邀请码改为商城码 添加新语言优化,自动翻译现有语句 小程序外部跳转生成器(小程序 H5 链接) 后台主动退款功能 增加短信发送的缓存,判断发送手机号以及ip数量限制 消息管理优化,可以更简单的从后台添加消息 拼团砍价秒杀功能关闭后,页面不显示相关功能 功能优化 对外接口权限优化 充值和付费会员小程序发货管理自动发货优化 后台版权信息优化闪烁 确认订单页面到店自提优化电话显示 公众号菜单添加字数提醒 移动端订单管理退款订单搜索优化 公众号菜单添加字数提醒 绑定员工优化 修复拼团未完成,发送了卡密或者优惠券 二级返佣冻结问题优化 优化批量翻译队列 diy商品列表组件分类选择优化 微信v3接口抽奖红包发送优化 好友代付查看订单优化
2024-08-25 12:01:15 116.76MB 微信 商城源码 商城小程序 crmeb
1
CRMEB标准版PC前端模板CRMEB-BZ-PC v5.3.0是一款专为CRMEB系统设计的前端界面模板,适用于电子商务平台。该版本是在2024年3月26日更新的,主要针对CRMEB v5.3版本进行了优化和适配,以提供更流畅、更稳定、更高效的用户体验。模板的设计和开发遵循了现代Web开发的最佳实践,旨在提升网站的交互性、美观性和功能性。 CRMEB是一个综合性的电子商务解决方案,集成了客户关系管理(CRM)、电子商务(E-commerce)和内容管理系统(CMS)等功能,为企业打造一站式的在线销售和服务平台。前端模板作为CRMEB系统的重要组成部分,它负责展示商品、处理用户交互、实现页面动态效果,以及优化用户体验。 在CRMEB-BZ-PC v5.3.0中,你可以期待以下关键知识点: 1. **响应式设计**:模板采用响应式布局,能自动适应不同设备屏幕尺寸,无论是桌面电脑、平板还是手机,都能呈现良好的视觉效果。 2. **Bootstrap框架**:基于Bootstrap,这是一个流行的前端开发框架,提供了丰富的组件和样式,便于快速构建和定制界面。 3. **Vue.js应用**:可能采用了Vue.js进行前端状态管理和数据绑定,Vue.js是一种轻量级的JavaScript框架,用于构建用户界面,能提高开发效率和代码可维护性。 4. **AJAX交互**:利用AJAX技术实现无刷新页面更新,提升用户体验,如购物车操作、商品筛选、表单提交等。 5. **SEO优化**:前端模板会考虑搜索引擎优化,如元标签设置、结构化数据标记等,有利于提升网站在搜索引擎中的排名。 6. **安全性**:CRMEB模板可能包含安全防护机制,如XSS和CSRF防护,确保用户数据的安全。 7. **插件集成**:可能集成了地图、支付接口、社交分享等第三方插件,增强网站功能。 8. **自定义主题**:提供灵活的主题配置,允许用户根据品牌需求调整颜色、字体等视觉元素。 9. **性能优化**:包括图片压缩、代码压缩、CDN加速等策略,提高网站加载速度。 10. **文档支持**:官方可能提供了详细的使用和开发文档,帮助开发者理解和修改模板。 为了获得更多信息和使用指南,可以访问链接,了解更多关于CRMEB系统升级和模板使用的具体细节。同时,`template`和`crmeb`这两个文件夹可能包含了模板的HTML、CSS、JavaScript文件以及与CRMEB系统的接口交互文件,开发者可以通过这些源码深入学习和定制模板。 CRMEB-BZ-PC v5.3.0是一个全面的前端解决方案,结合了现代前端技术和CRMEB的特性,为电子商务平台提供了强大且易用的界面。对于想要学习前端开发、了解CRMEB系统或改进现有电商平台的开发者来说,这是一个宝贵的资源。
2024-08-25 11:28:07 5.57MB crmeb
1
新版CCNP学习指南(英文版),包括BSCI、BCMSN、ISCW、ONT
2024-08-24 17:10:42 47.86MB CCNP学习指南(英文版)
1
【作品名称】:基于 python+深度学习的视觉问答【毕业设计】(含源码+答辩 ppt) 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:对于视觉问答(VQA)的研究具有深刻的学术意义和广阔的应用前景。目前,视觉问答模型性能提升的重点在于图像特征的提取,文本特征的提取,attention权重的计算和图像特征与文本特征融合的方式这4个方面。本文主要针对attention权重的计算和图像特征与文本特征融合这两个方面,以及其他细节方面的地方相对于前人的模型做出了改进。本文的主要工作在于本文使用open-ended模式,答案的准确率采用分数累积,而不是一般的多项选择。本文采用CSF模块(包括CSF_A和CSF_B)不仅对spatial-wise进行了权重计算,还对channel-wise进行了权重计算。本文采用MFB模块和ResNet152 FC层之前的tensor来结合LSTM的输出来计算每个区域的权重,而不是直接把image feature和question feature结合本文采用SigMoid来
2024-08-24 15:02:35 2.73MB 毕业设计 python 深度学习
1