该资源是有关OA办公系统CS源代码类,对于该文件,比较全面,希望能帮助到别人
2024-11-27 14:42:19 8.51MB
1
python实现svm支持向量机算法代码,数据集随机生成
2024-11-26 15:26:52 1KB python 支持向量机
1
重构-改善既有代码的设计(中文版):对学习重构和改善代码很有用
2024-11-26 09:17:50 12.42MB 重构-改善既有代码的设计+中文版
1
RSA算法是一种非对称加密算法,它在信息安全领域扮演着重要的角色。该算法基于数论中的大数因子分解难题,确保了数据的机密性。Lazarus是Free Pascal的一个集成开发环境,它提供了一个友好的图形用户界面来编写Delphi和Pascal语言的程序。在Lazarus中实现RSA公钥和私钥的生成以及加密解密功能,对于开发者来说,具有很高的实用价值。 我们需要理解RSA的核心概念。RSA由三个主要步骤组成:密钥生成、加密和解密。密钥生成涉及到选择两个大素数p和q,计算它们的乘积n=p*q,然后计算欧拉函数φ(n)=(p-1)*(q-1)。接着,选择一个与φ(n)互质的整数e作为公钥的模指数,再找到一个满足1< d < φ(n)且d*e ≡ 1 mod φ(n)的整数d,作为私钥的模指数。公钥由(n, e)组成,私钥由(n, d)组成。 在Lazarus环境中,可以使用提供的库或自定义代码来实现这些步骤。描述中提到的项目可能包含了实现这些功能的源代码,如LbDesign.dcr、LbKeyEd1.dfm等文件,它们可能是界面设计和编辑密钥的组件。LbRDL.inc和LbBF.inc可能是包含加密解密相关功能的代码文件。 在实际应用中,我们可以使用公钥对明文进行加密,得到密文,然后使用私钥对密文进行解密,恢复原文。这种机制使得只有拥有私钥的人才能解密信息,从而保证了数据的安全性。描述中提到了使用不同位数(128、256、512、768、1024、2048)的密钥,位数越大,安全性越高,但加密解密的速度会相对较慢。 在Windows 10环境下测试表明,这个Lazarus RSA实现能够兼容该操作系统,并能处理不同长度的密钥。此外,RSACrypt.ico和RSADemo.ico可能分别代表了项目的图标和演示应用程序的图标。 总结起来,"Lazarus RSA 生成公私钥及加密解密代码"是一个在Lazarus环境下实现的RSA加密解密工具,支持多种密钥长度,适用于实际工程需求。通过这个项目,开发者可以学习到RSA算法的实现细节,以及如何在Lazarus中构建相关的图形用户界面,这对于提升软件开发者的安全编程能力非常有帮助。
2024-11-25 09:46:07 139KB Lazarus RSA
1
Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程。该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。通过这种方式,Spring Boot致力于在蓬勃发展的快速应用开发领域(rapid application development)成为领导者。 Servlet全称“Java Servlet”,中文意思为小服务程序或服务连接器,是运行在Web服务器或应用服务器上的程序,它是作为来自Web浏览器或其他HTTP客户端的请求和HTTP服务器上的数据库或应用程序之间的中间层。Servlet具有独立于平台和协议的特性,主要功能在于交互式地浏览和生成数据,生成动态Web内容。 JSP将Java代码和特定变动内容嵌入到静态的页面中,实现以静态页面为模板,动态生成其中的部分内容。JSP引入了被称为“JSP动作”的XML标签,用来调用内建功能。另外,可以创建JSP标签库,然后像使用标准HTML或XML标签一样使用它们。标签库能增强功能和服务器性能,而且不受跨平台问题的限制。JSP文件在运行时会被其编译器转换成更
2024-11-25 09:36:22 37.46MB java
1
时间序列预测是基于时间数据进行预测的任务。它包括建立模型来进行观测,并在诸如天气、工程、经济、金融或商业预测等应用中推动未来的决策。 本文主要介绍时间序列预测并描述任何时间序列的两种主要模式(趋势和季节性)。并基于这些模式对时间序列进行分解。最后使用一个被称为Holt-Winters季节方法的预测模型,来预测有趋势和/或季节成分的时间序列数据。 为了涵盖所有这些内容,我们将使用一个时间序列数据集,包括1981年至1991年期间墨尔本(澳大利亚)的温度。这个数据集可以从这个Kaggle下载,也可以文末获取。喜欢记得收藏、关注、点赞。 时间序列预测是数据分析领域中的一个重要任务,特别是在处理与时间相关的数据时,如天气预报、工程计划、经济指标预测、金融市场分析以及商业决策等。本文聚焦于如何利用Python进行时间序列预测,特别是针对具有趋势和季节性特征的数据。时间序列通常包含两个主要模式:趋势和季节性。 **趋势**是指数据随时间的上升、下降或保持稳定的状态。在时间序列分析中,识别和理解趋势是至关重要的,因为它直接影响到预测的准确性。趋势可以是线性的、非线性的,甚至是周期性的。 **季节性**则是指数据在特定时间段内呈现出的重复模式。例如,零售业的销售量可能在节假日季节显著增加,而天气数据可能会根据四季的变化而波动。季节性分析有助于捕捉这种周期性的变化,以更准确地预测未来。 为了分析和预测具有趋势和季节性的时间序列,本文介绍了**Holt-Winters季节方法**。这是一种扩展的指数平滑法,它可以分解时间序列为趋势、季节性和随机性三部分,从而更好地理解和预测数据。Holt-Winters方法特别适用于有明显季节性模式的数据,如我们的例子中,1981年至1991年墨尔本的温度数据。 我们需要导入必要的Python库,如`pandas`、`numpy`、`matplotlib`以及`statsmodels`,后者提供了一系列统计模型和测试工具,包括用于时间序列预测的ExponentialSmoothing类。数据集包含了日期和相应的温度值,通过`datetime`库处理日期,使用`ExponentialSmoothing`构建模型进行预测。 在进行分析前,通常会先对数据进行可视化,以直观地查看时间序列中的趋势和季节性。在这里,我们创建了一个图形,用垂直虚线表示每年的开始,以便观察温度变化的年度模式。 接下来,会使用统计检验,如**ADF(Augmented Dickey-Fuller)检验**和**KPSS检验**,来判断时间序列是否平稳。如果数据不平稳,可能需要进行差分操作,以消除趋势或季节性,使其满足预测模型的要求。 一旦数据预处理完成,就可以使用Holt-Winters方法建立模型。此方法包括三个步骤:趋势平滑、季节性平滑和残差平滑。通过这三个步骤,模型可以学习到时间序列中的长期趋势和短期季节性模式,然后用于生成预测。 模型会进行训练,并对未来看似不可见的数据点进行预测。预测结果可以通过绘制预测值与实际值的比较图来评估模型的性能。通过调整模型参数,如平滑系数,可以优化预测结果。 总结来说,Python提供了强大的工具来处理和预测具有趋势和季节性的时间序列数据。通过理解时间序列的基本模式,结合Holt-Winters季节方法,我们可以有效地对各种领域中的复杂数据进行预测,为决策制定提供科学依据。在这个过程中,数据的预处理、模型选择、模型训练以及结果评估都是至关重要的步骤。对于那些需要处理时间序列问题的IT从业者,掌握这些知识和技巧是非常有益的。
2024-11-25 07:07:54 1.78MB python
1
北京市朝阳医院药品销售数据分析代码
2024-11-25 05:53:19 304KB 数据分析
1
《软件工程》课大作业 具体代码实现 工程文件《软件工程》课大作业 具体代码实现 工程文件
2024-11-25 05:51:07 4KB 数据挖掘
1
内容索引:Delphi源码,系统相关,硬件,特征码  Delphi获取电脑硬件的特征码信息,也就是大家学说的硬件ID信息,本程序获取的ID主要有:逻辑硬盘号、物理硬盘号、网卡MAC、Bios、CPU、Windows版本等,列出固件中在出厂时烧录进的唯一ID标识,用来编写硬件检测软件时候能用上其中的模块。
2024-11-24 22:42:36 329KB Delphi源代码 系统相关
1
基于spark期末大作业等等项目代码.zip 基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等
2024-11-24 17:58:13 311.49MB spark
1