开发环境: Pycharm + Python3.6 + 卷积神经网络算法
基于人脸表面特征的疲劳检测,主要分为三个部分,打哈欠、眨眼、点头。本实验从人脸朝向、位置、瞳孔朝向、眼睛开合度、眨眼频率、瞳孔收缩率等数据入手,并通过这些数据,实时地计算出驾驶员的注意力集中程度,分析驾驶员是否疲劳驾驶和及时作出安全提示。
视觉疲劳检测原理:因为人在疲倦时大概会产生两种状态: 眨眼:正常人的眼睛每分钟大约要眨动10-15次,每次眨眼大概0.2-0.4秒,如果疲倦时眨眼次数会增多,速度也会变慢。打哈欠:此时嘴会长大而且会保持一定的状态。因此检测人是否疲劳可以从眼睛的开合度,眨眼频率,以及嘴巴张合程度来判断一个人是否疲劳。
检测工具
dlib :一个很经典的用于图像处理的开源库,shape_predictor_68_face_landmarks.dat是一个用于人脸68个关键点检测的dat模型库,使用这个模型库可以很方便地进行人脸检测,并进行简单的应用。
眨眼计算原理:
(1) 计算眼睛的宽高比
基本原理:计算 眼睛长宽比 Eye Aspect Ratio,EAR.当人眼睁开时,EAR
1