现有csv格式的数据集,它的属性:date_time id shop_name title sku_name price sold discount brand parameter 分别对应: date_time:月份(例如:2020年11月) id:商品id shop_ name:店铺名称 title:商品标题 sku_name:sku标题 price:商商品单价(定价、原价) sold:商品销量 discount:商品折扣(空值表示未享受折扣) brand:商品品牌 paraneter商品考数(包含生产个业和商品品牌等信息) 1.对店铺进行分析,一共包含多少家店铺,各店铺的销售额占比如何?给出销售额占比最高的店铺,并分析该店铺的销售情况。 2.对所有药品进行分析,一共包含多少个药品,各药品的销售额占比如何?给出销售额占比最高的10个药品,并绘制这10个药品每月销售额曲线图。 3.对所有药品品牌进行分析,一共包含多少个品牌,各品牌的销售额占比如何?给出销售额占比最高的10个品牌,并分析这10个品牌销售较好的原因?
2024-07-28 16:36:36 4.87MB 数据分析 数据集 健康医疗
1
finebi6.0 服务器版 安装教程 https://blog.csdn.net/qq_24330181/article/details/140435340
2024-07-28 00:43:48 979.31MB finebi 数据分析 数据可视化
1
python Python数据分析与可视化大作业 + 源代码 + 数据 + 详细文档
2024-07-12 16:22:47 7.77MB python 数据分析 可视化 pandas
1
在金融领域,欺诈行为是一个严重的问题,它不仅威胁到金融机构的稳定,还可能导致客户财产损失。本项目聚焦于使用Python进行金融欺诈行为的检测,通过数据驱动的方法来预测潜在的欺诈活动。以下是对这个主题的详细阐述。 我们要了解数据分析在欺诈检测中的核心作用。在金融欺诈检测中,数据分析涉及收集、清洗、处理和解释大量的交易数据。Python作为一门强大的编程语言,拥有丰富的数据分析库,如Pandas、NumPy和SciPy,这些工具能够高效地处理结构化和非结构化的数据。 在描述中提到的回归预测模型是一种常用的预测方法。在金融欺诈检测中,我们可能使用线性回归、逻辑回归或更复杂的回归模型如梯度提升机(XGBoost)、随机森林等。回归模型通过对历史欺诈和非欺诈交易的特征进行学习,构建一个模型,然后用该模型预测新的交易是否具有欺诈倾向。这通常涉及到特征选择,例如交易金额、交易时间、用户行为模式等,这些特征可以对欺诈行为提供有价值的线索。 在Python中实现这样的模型,通常包括以下几个步骤: 1. 数据预处理:使用Pandas读取数据,进行缺失值处理、异常值检测、数据类型转换等。 2. 特征工程:创建新特征,如时间间隔、用户交易频率等,可能有助于模型理解欺诈模式。 3. 划分数据集:将数据分为训练集和测试集,通常采用交叉验证策略以提高模型泛化能力。 4. 模型训练:使用选定的回归模型对训练集进行拟合,调整模型参数以优化性能。 5. 模型评估:使用测试集评估模型的预测效果,常见的指标有准确率、召回率、F1分数等。 6. 模型优化:根据评估结果调整模型,可能需要迭代多次以找到最佳模型。 标签中提到的行为预测和金融数据分析也是关键点。行为预测是指通过分析用户的历史行为模式来预测未来行为,这在欺诈检测中至关重要,因为欺诈者往往表现出与正常用户不同的行为模式。而金融数据分析则涵盖了各种统计和机器学习技术,用于揭示隐藏的欺诈模式和趋势。 在这个项目的代码文件"codes"中,很可能包含了上述步骤的具体实现。通过阅读和理解代码,我们可以深入了解如何运用Python和相关的数据分析技术来构建和优化欺诈检测模型。 这个项目提供了使用Python进行金融欺诈行为检测的实际应用案例,通过回归预测模型和数据分析技术,有助于提升欺诈检测的准确性和效率,从而保护金融机构和客户的利益。
Informatica powercenter 元数据分析 PDF
2024-07-08 16:05:14 608KB Informatica 元数据分析
1
什是ERP系统? 很多人都说做电商行业一定要学会ERP系统,但是对于我们大多数人来说并不知道是做什么的,也不知道如何使用。其实ERP系统是企业资源计划(Enterprise Resource Planning )的简称,是一个软件。 这里面你可以看到你店铺的一些数据,订单同步,产品管理,数据分析,包括上架新产品等等。可以更直观的了解你的店铺,还有一些常用的基础流程,比如你想上架新活动,想看看每天的浏览量,或者是截止目前的收入等等,都可以帮助我们更好的了解店铺。 是辅助我们运营店铺一个很好的工具 当然不同的ERP系统的功能也都不一样,所以建议大家在选择的时候可以先试用一下,这里也给大家找了2款供参 1、芒果店长ERP 这里面的功能挺多的,也比较实用,里面的条目我觉得比较清晰好找,稳定性还可以。但是可以批量修改的内容少,也算比较耗时了。 2、客优云ERP 虾皮shopee官方合作的软件,里面的功能比较全,价格是1999一年,如果是平时用的功能比较多的话还是可以看看的。 我是枝枝~不定期分享免费干货,如果对你有帮助,记得关注点赞哦!
2024-07-03 10:14:58 8.69MB 数据分析
1
"三相桥式可控整流电路的MATLAB仿真" 三相桥式可控整流电路是电力电子技术中最重要的电路之一,也是应用最广泛的电路,不仅应用于一般工业领域,也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域。因此,对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有重要的现实意义。 三相桥式半控整流电路是三相桥式可控整流电路的一种, 由共阴极接法的三相半波可控整流电路与共阳极接法的三相半波不可控整流电路串联而成。这种电路兼有可控和不可控的特性,共阳极组3个整流二极管总是自然换相点换流,使电流换到比阴极电位更低的一相;而共阴极组3个晶闸管则要在触发后才能换到阳极电位高的一个。 三相桥式半控整流电路的工作情况可以通过MATLAB软件的Power System工具箱进行仿真,并对其带纯电阻负载及电阻电感性负载时的工作情况进行对比分析与研究。仿真结果验证了所建模型的正确性。 在仿真中,假定负载电感L足够大,可以认为负载电流在整个稳态工作过程中保持恒值,因此不论控制角为何值,负载电流i总是单向流动,而且变化很小。一个周期中参与导通的管子及输出整流电压的情况如表1所示。 表1 三相桥式半控整流电路电阻负载ct=0时的晶闸管和二极管工作情况 晶闸管触发角a=0时,对于共阴极组所接的3个晶闸管,阳极所接交流电压最高的1个导通;同理,对于共阳极组阴极所接交流电压最低的1个导通。这样,任意时刻共阳极组和共阴极组中总是各有1个管子处于导通状态,负载电压为某个线电压。 图1中各个管子均在自然换相点处换相,从输入电压与负载线电压的对照来看,自然换相点既是各线电压的交点,又是各相电压的交点。从线电压波形可以看到由于共阴极组中处于通态的晶闸管对应的是最大相电压,而共阳极组中对应的是最小的相电压。 在MATLAB仿真中,可以通过改变共阴极组晶闸管的控制角,获取0-2.34u(变压器二次侧电压)的直流电压。具体电路图如图1所示。 三相桥式可控整流电路的MATLAB仿真可以帮助我们更好地理解和分析三相桥式可控整流电路的工作原理和特性,并且可以应用于实际工程中。
数据集齐全(60k+数据) 所用方法多,不论老师要求什么,总有符合用得上(分类,逻辑回归,时间序列) 代码+数据集+报告一条龙服务。 内容说明: 数据预处理,数据清洗,对数据进行描述性分析,统计分析,相关性分析,用ggplot2画图。并分别用逻辑回归和决策树分类建立模型。和用时间序列预测数据。 难度不低于课程实践
2024-07-02 10:43:28 17.94MB r语言 逻辑回归 数据挖掘
内容包括2015至2023年的国内汽车销售数据,包含3张表,涉及年份、月份、车型、售价、厂商、销量、同比增长情况等字段,可以用于数据分析练习使用,可用于数据清洗、相关性分析、回归分析等Python练习
2024-07-01 12:18:54 2.55MB 数据分析 python 数据集
1
json-utils 提供JSON相关的各类工具方法,比如schema转json、json转schema、json元数据分析等 json: JSON(JavaScript Object Notation, JS对象简谱) 是一种轻量级的数据交换格式。 schema: 一般用来描述JSON的数据格式,常用于json数据格式的校验。() json工具集合 / json工具方法清单 7个通用的json工具方法 getJsonDataByKeyRoute(): 根据key值路径获取对应的json数值对象(比如用于获取json数据中'data-user-name'对应的数据) getSchemaByIndexRoute(): 根据index索引路径获取对应的schema数据对象(比如通过'2-1'获取schema中第3个子对象中的第2个字段对应的数据) indexRoute2keyRoute():
2024-06-30 17:39:13 96KB JavaScript
1