文本生成 只需几行代码,即可在任何文本数据集上轻松训练您自己的任意大小和复杂度的文本生成神经网络,或使用预先训练的模型快速训练文本。 textgenrnn是上的顶部一个Python 3模块 / 用于创建 S,与许多凉爽特性: 一种现代神经网络体系结构,利用新技术进行注意力加权和跳过嵌入,以加快训练速度并提高模型质量。 在字符级别或单词级别上训练并生成文本。 配置RNN大小,RNN层数以及是否使用双向RNN。 训练任何通用输入文本文件,包括大文件。 在GPU上训练模型,然后使用它们与CPU生成文本。 在GPU上进行训练时,利用功能强大的RNN的CuDNN实现,与典型的LSTM实现相比,可大大缩短训练时间。 使用上下文标签训练模型,从而使其在某些情况下可以更快地学习并产生更好的结果。 您可以在此免费玩textgenrnn并使用GPU训练任何文本文件! 阅读或以获取更多信息!
2023-01-11 15:20:49 9.42MB Python
1
针对已有神经网络功放建模的建模精度不高,易陷入局部极值等问题,提出一种新的改进并行粒子群算法(Improved Parallel Particle Swarm Optimization,IPPSO)。该算法在并行粒子群算法的基础上引入自适应变异操作,防止陷入局部最优;在微粒的速度项中加入整体微粒群的全局最优位置,动态调节学习因子与线性递减惯性权重,加快微粒收敛。将该改进算法用于优化RBF神经网络参数,并用优化的网络对非线性功放进行建模仿真。结果表明,该算法能有效减小建模误差,且均方根误差提高19.08%,进一步提高了神经网络功放建模精度。
1
MATLAB平台:交通标志识别(选颜色定位,分割,bp神经网络方法识别,可模板,sift,svm等方法识别)
2023-01-10 19:11:13 1.37MB 交通标志识别 颜色定位
1
简单,可扩展,值得继续研究的方向,可进行对比实验
2023-01-09 18:17:03 23.17MB cnn 人工智能 神经网络 深度学习
1
BP神经网络的利用 输入xy 输出xy,用python语言编写的
2023-01-09 17:56:21 57KB bp Deeplearning
1
管道泄漏检测和定位在管道的安全生产中占有重要的位置。本文将用小波包分解技术提取的管道泄漏检测系统特征信号作为神经网络的输人,建立管道运行状态的神经网络分类器,根据输出对管道的运行状态进行识别。利用小波变换特性提取压力传感器的信号奇异点,根据负压力波定位法对管道泄漏点定位,仿真结果验证了该方法的有效性。
2023-01-09 10:56:03 262KB 自然科学 论文
1
建立了一种基于神经网络的交通流量动态预测模型,分别采用BP神经网络和径向基网络(RBF)建立了预测模型,给出了数据预处理方法和预测模型评价指标.仿真结果表明该交通流量预测方法的有效性,结果分析得出径向基网络能够更加快速有效的进行城市交通流预测。
2023-01-07 20:51:28 322KB 神经网络 交通流 预测模型
1
对不同类型的皮肤癌进行分类 有任何疑问请联系 - josemebin@gmail.com
2023-01-07 12:15:31 1.29MB matlab
1
交通标志识别 在这个项目中,我使用卷积神经网络对交通标志进行分类。 具体来说,我训练了一个模型,用于根据“德国交通标志对交通标志进行分类。 我使用TensorFlow进行模型开发,并在GPU上对其进行了训练。 分几个步骤: 加载数据集 探索,总结和可视化数据集 设计,训练和测试模型架构 使用模型对新图像进行预测 分析新图像的softmax概率 完整的项目代码可以在找到 数据集摘要与探索 1.数据集的基本摘要。 此步骤的代码包含在的3d code cell中 我使用了pandas库来计算交通标志数据集的摘要统计信息: 训练示例数= 34799 测试例数= 12630 图像数据形状=(32,32,3) 班级数量= 43 2.数据集的探索性可视化。 该步骤的代码包含在的5th code cell中。 这是数据集的探索性可视化。 它是显示数据分布方式的条形图。 我们看到分布不均。
2023-01-06 20:41:07 145KB JupyterNotebook
1
人工神经网络的最后的实验。用了两种方法,bp算法和 rbf 径向基神经网络
2023-01-06 15:36:15 21.53MB 人工神经网络 实验报告 bp rbf
1