基于线性回归的PM2.5预测系统python源码,包含了所有的数据以及代码。可供学习及设计参考。 # import library # import csv import numpy as np from numpy.linalg import inv import random import math import sys # read data # data = [] # 每一个维度存储一种污染物的数据,一共有18种污染物 for i in range(18): data.append([]) # []表示这十八个输入中,每一个输入都是一个列表 n_row = 0 # 初始从第0行开始 # 打开数据文件,文件big5编码为繁体字 text = open('D:/PythonCodes/CNN/train.csv', 'r', encoding='big5') # 读取名称为text的Excel文件,返回文件行的累加信息,类型为_csv.reader row = csv.reader(text , delimiter=",") # r中保存了当前行的所有信息
遗传算法在数据挖掘中的应用遗传算法在数据挖掘中的应用遗传算法在数据挖掘中的应用遗传算法在数据挖掘中的应用
2023-05-25 20:18:19 243KB 遗传算法在数据挖掘中的应用
1
指出遗传算法的不足,将免疫学原理引入遗传算法,进而形成免疫遗传算法。针对免疫遗传算法在优化问题中的研究现状,从编码技术、先验知识、操作算子、混沌理论引入、多种群方式、与小生境理论结合等方面进行了总结,指出了不足之处,最后探讨了免疫遗传算法需要进一步研究的问题和发展方向。
1
预测二氧化碳排放量 目录 关于 预测汽车的CO2排放对于在汽车模型中产生较少的CO2很有用,它将减少二氧化碳在环境中的有害影响。 在该项目中,对数据集进行feature engineering以选择影响车辆二氧化碳排放的特征。 splitting数据按scaling并将其splitting为训练和测试数据集后, splitting进行cross validation 。 在分析learning curve ,然后使用训练数据训练模型。 最后,该模型是对测试数据进行测试,并evaluated的基础上, mean squared error和r2 score 。 使用的技术 用作编程语言。 Numpy用于数学和数据处理。 Pandas用于分析和处理数据。 Matplotlib和Seaborn用于数据可视化,有助于数据分析。 Sciki-learn用于数据预处理,创建机器学习模型并
1
如果您正在寻找一份完整的R语言数据分析、数据预测和机器学习案例,那么我们的资源库将为您提供一切所需。本资源库提供了一系列案例,包括数据可视化、数据清洗、机器学习模型构建和数据预测等内容。我们的案例旨在帮助您更好地了解R语言的使用和机器学习的基础知识。 我们的资源库包括以下主题: 数据可视化:使用ggplot2包和其他R语言可视化工具,展示如何将数据可视化,从而更好地理解数据并做出更明智的决策。 数据清洗:展示如何使用dplyr包和其他数据清洗工具来清洗和准备数据,使其可以用于机器学习模型的训练。 机器学习模型构建:使用caret包和其他机器学习工具,构建和训练各种类型的机器学习模型,包括回归、分类和聚类模型等。 数据预测:展示如何使用机器学习模型来预测未来数据,并对预测结果进行评估和优化。 每个案例都包含完整的代码和数据集,可以帮助您更好地了解每个步骤的细节和操作。我们的资源库适合各种级别的用户,包括初学者和有经验的用户。您可以根据自己的兴趣和需求选择不同的主题,并按照自己的步骤和想法来运行代码和修改案例。 如果正在寻找一份完整的R语言数据分析、数据预测和机器学习案例,
2023-05-24 10:51:57 2KB r语言 数据分析 机器学习
1
实验二 预测分析算法设计与实现,大家可以看看,如果有需要
2023-05-23 23:42:15 54KB 编译原理
1
基于状态空间的模型预测MPC控制器的设计,附带例子(MATLAB)
2023-05-23 19:41:23 5KB MPC
1
基于遗传算法和粒子群优化算法的信道分配研究,文中介绍遗传算法和粒子群算法各自的优缺点,并进行结合算法进行信道分配
2023-05-22 09:15:08 4.06MB 算法信道分配
1
pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集.zip 第1步:轨迹数据滤波,将原始US101和I-80的原始数据放入下图文件夹,运行代码"trajectory_denoise.py",结果如下: image 第2步:移除不必要特征以及添加新特征,运行代码"preprocess.py",结果如下: image 第3步:根据需要添加横、纵向速度和加速度特征,运行代码"add_v_a.py",结果如下: image 第4步:按照滑动窗口法提取所需8s轨迹序列,运行代码"final_DP.py",结果如下: image 第5步:最终合并US101和I-80数据集,为保证数据的均衡性以及充分利用数据集,随机采样10组数据集,每组按照6:2:2的比例划分训练集、测试集和验证集;运行代码"merge_data.py". 模型训练及测试 MTF-LSTM模型训练,运行代码"MTF-LSTM.py" MTF-LSTM-SP模型训练,运行代码"MTF-LSTM-SP.py" 本文训练好的MTF-LSTM和MTF-LSTM-SP模型保存在文件夹/algorithm
基于时滞型神经网络的输电线路覆冰预测,以三维图的形式展示给各位
2023-05-18 17:11:19 461KB 神经网络 覆冰预测
1