广义Pareto分布(generalized Pareto distribution,GPD)是统计分析中的一个极为重要的分布.对基于广义 Pareto分布的若干个样本分位数进行了研究.首先,求解具有较高精度的形状参数的参数估计;其次,得出广义 Pareto分布位置参数及尺度参数的近似广义最小二乘估计.本方法简单易行,对形状参数的存在条件没有限制,通过Monte Carlo模拟验证了该方法具有较高的精度.
2021-08-27 21:21:21 619KB 工程技术 论文
1
提出改进非劣分类遗传算法(NSGA-Ⅱ)在燃煤锅炉多目标燃烧优化中的应用,优化的目标是锅炉热损失及NOx排放最小化。首先,采用BP神经网络模型分别建立了300MW燃煤锅炉的NOx排放特性模型和锅炉热损失模型,同时利用锅炉热态实验数据对模型进行了训练和验证,结果表明,BP神经网络模型可以很好地预测锅炉的排放特性和锅炉的热损失特性。在建立的锅炉排放特性和热损失BP神经网络模型基础上,采用非劣分类遗传算法对锅炉进行多目标优化,针对NSGA-Ⅱ在燃煤锅炉燃烧多目标优化问题应用中Pareto解集分布不理想、易早熟收敛的问题,在拥挤算子及交叉算子上进行了相应改进。优化结果表明,改进NSGA-Ⅱ方法与BP神经网络模型结合可以对锅炉燃烧实现有效的多目标寻优、得到理想的Pareto解,是对锅炉燃烧进行多目标优化的有效工具,同改进前的NSGA-Ⅱ优化结果比较,其Pareto优化结果集分布更好、解的质量更优。
1
Pareto存档进化策略算法(The Pareto Archived Evolution Strategy)
2021-07-31 18:10:06 210KB 进化算法、PAES
1
如何制作Pareto
2021-07-21 09:03:56 22KB sunny1
1
进化算法在解决多目标优化问题中有其特有的优势.首先对多目标优化问题进行了描述;然后结合研究现状讨论了目前几种主要的基于进化算法的多目标优化方法,以及它们的优缺点;最后给出了多目标进化优化算法的一些应用, 以及进化多目标优化算法的未来发展方向.
1
为了提高多目标优化算法的收敛性、分布性和减少算法的计算代价, 提出一种基于量子行为特性的粒子群 优化(QPSO) 和拥挤距离排序的多目标量子粒子群优化(MOQPSO-CD) 算法. MOQPSO-CD 利用QPSO 快速接近真 实的Pareto 最优解, 同时引入高斯变异算子以增强解的多样性. 采用拥挤距离排序的方法对外部存储器中最优解进 行更新和维护, 使得从中选择的具有全局最优的领导粒子能够引导粒子群最终找到真实的Pareto 最优解. 仿真结果 表明, MOQPSO-CD 具有更好的收敛性和更均匀的分布性.
1
为高效求解多式联运运输方式优化选择问题,提出一种基于Pareto适应度的混合遗传算法,此算法基于Pa reto支配关系和个体像的小生境数进行适应度赋值,引入重插入算子,采用合理的交叉与变异方法,使得经交叉与变异之后的染色体仍然为问题可行解,提高了收敛速度,实证验证了算法的有效性.
2021-06-29 20:18:03 1.09MB 自然科学 论文
1
基于遗传算法求解多目标优化问题Pareto前沿
2021-06-29 11:02:04 313KB 遗传算法 多目标优化
1
提出基于改进的非支配排序遗传算法(NSGA-Ⅱ)的社区电动汽车充电站优化充电策略。首先,以电动汽车充电容量和配电变压器容量限制为约束条件,构建以单位电量充电费用最少、电网侧负荷方差最小为目标的电动汽车充电站多目标充电模型;然后,针对传统NSGA-Ⅱ存在的难以生成满足约束条件的初始种群、Pareto解集分布不均和最优解性能不高的缺点,提出改进初始种群生成和拥挤度比较算子相结合的NSGA-Ⅱ对模型进行求解,并采用基于信息熵的序数偏好法从最终Pareto解集中选择最优折中充电方案;最后,通过算例仿真验证了所提算法的有效性,表明改进NSGA-Ⅱ能在较大程度上提高电网侧的负荷水平和用户的充电性价比。
1
Pareto-Efficient .pdf
2021-06-08 13:01:45 791KB paper
1