在探讨新能源技术以及电力电子领域的应用时,电池储能系统(BESS)的双向DC/DC变换器技术是一个非常重要的研究方向。双向DC/DC变换器允许电池在充电和放电模式之间无缝切换,这对于电网稳定性和能量存储效率至关重要。在电网负荷不平衡或者可再生能源发电波动的情况下,这样的系统可以有效地进行能量的吸纳和释放,从而提高整体能源利用效率和电网的可靠性。 在给定的压缩包文件中,包含了三个主要的研究文件。《用于电池储能系统的双向DC_DC变换器研究_樊东东.caj》可能详细探讨了双向DC/DC变换器在电池储能系统中的应用、设计原理和控制策略。该研究可能深入分析了变换器的buck(降压)和boost(升压)两种工作模式,以及如何通过适当的控制算法实现这两种模式的转换,以适应不同的电网和电池状态。研究可能还涉及了变换器在不同工况下的效率问题、热管理、功率密度等关键性能指标。 接着,《光伏储能系统控制策略及优化配置研究_王一飞 2021.caj》很可能是关注于光伏储能系统的整体优化,包含了双向DC/DC变换器的控制策略。这份研究可能探讨了如何根据光伏发电的波动性来调整储能系统的充放电过程,以达到最优的能量管理效果。控制策略可能包括了MPPT(最大功率点跟踪)技术以及电池状态估计等技术,以确保系统始终在最佳条件下运行。 《buck_boost.slx》可能是一个仿真模型文件,用于模拟和分析双向DC/DC变换器在不同工作状态下的行为。该仿真模型可能涵盖了从基本的电力电子元件到复杂的控制系统在内的多种组件。通过这样的仿真软件,工程师可以在实际制造和部署之前,对变换器的设计进行详尽的测试和验证,确保变换器能够在实际应用中达到预期的性能。 综合来看,这些文件为我们提供了关于电池储能双向DC/DC变换器设计、控制策略以及系统仿真方面的深入知识。这不仅对于学术研究,而且对于实际应用中提高储能效率、优化能量管理、减小系统成本等方面都具有重要的意义。
2025-11-16 15:36:33 6.8MB
1
三相模块化多电平变换器(MMC)整流器:双闭环与多种控制策略详解(2020b版及以上),三相MMC整流器的模块化多电平变换器(MMC):深度解析双闭环与多种控制策略及载波移相调制技术,模块化多电平变器(MMC),本模型为三相MMC整流器。 控制策略:双闭环控制、桥臂电压均衡控制、模块电压均衡控制、环流抑制控制策略、载波移相调制,可供参考学习使用,默认发2020b版本及以上。 ,模块化多电平变换器(MMC);三相MMC整流器;双闭环控制;桥臂电压均衡控制;模块电压均衡控制;环流抑制控制策略;载波移相调制;2020b版本及以上。,三相模块化多电平变换器整流器:双闭环与均衡控制策略解析与应用
2025-11-10 23:04:54 7.46MB sass
1
PWM控制下的半桥与全桥LLC谐振变换器的仿真过程,重点探讨了软开关技术和输出电压闭环控制的实现。文中首先简述了LLC谐振变换器的基本概念及其优势,接着逐步讲解了如何使用Matlab/Simulink/PLECS等软件构建模型,包括选择合适的谐振元件参数。随后,文章深入分析了PWM控制策略的作用以及如何通过调整PWM信号的占空比来维持输出电压的稳定性。此外,还特别强调了闭环控制系统的设计,确保输出电压保持在设定范围内,并减少了开关损耗和噪声。最后,通过对仿真结果的分析,验证了所提出的方法的有效性,并对未来的研究方向进行了展望。 适合人群:从事电力电子设计的技术人员、高校相关专业师生、对电力电子技术感兴趣的科研工作者。 使用场景及目标:适用于需要深入了解LLC谐振变换器工作原理和技术细节的人群,帮助他们掌握PWM控制策略、软开关技术和闭环控制的实际应用,从而提高设计能力和解决实际工程问题的能力。 其他说明:本文不仅提供了理论知识,还包括具体的建模和仿真操作指导,有助于读者快速上手实践。
2025-11-07 13:53:50 513KB
1
半桥LLC谐振变换器Matlab Simulink仿真技术研究:电压闭环PI-PI控制策略下输出12V实现软开关运行的研究与实现,基于Matlab Simulink仿真的半桥LLC谐振变换器:电压闭环PI控制实现12V输出与软开关运行,半桥LLC谐振变器,Matlab simulink仿真,电压闭环PI pi控制,输出电压12V,实现软开关运行。 ,半桥LLC谐振变换器; Matlab simulink仿真; 电压闭环PI控制; 软开关运行; 输出电压12V,Matlab仿真半桥LLC谐振变换器:实现12V软开关电压闭环控制
2025-11-07 13:28:18 2.62MB safari
1
**仿射变换(Affine Transform)** 仿射变换是计算机图形学、图像处理以及几何变换领域中的一个重要概念。它是一种线性变换,保留了平行性和共线性,但不保持长度和角度。在二维空间中,仿射变换可以通过一个2x3的矩阵表示,将坐标点(x, y)映射到新的坐标(x', y')。这种变换通常包括平移、旋转、缩放和剪切等操作。 **1. 平移** 平移是将图形沿x轴和y轴移动一定的距离。在仿射变换中,平移可以通过在变换矩阵的最后增加一个平移向量(t_x, t_y)来实现。变换矩阵变为: ``` [1 0 t_x] [0 1 t_y] [0 0 1] ``` **2. 旋转** 旋转是围绕原点逆时针或顺时针转动一个角度θ。旋转矩阵为: ``` [cos(θ) -sin(θ) 0] [sin(θ) cos(θ) 0] [0 0 1] ``` **3. 缩放** 缩放是改变图形的大小,分别沿着x轴和y轴缩放s_x和s_y倍。缩放矩阵为: ``` [s_x 0 0] [0 s_y 0] [0 0 1] ``` **4. 剪切** 剪切会改变图形的形状,沿着一个轴拉伸或压缩另一个轴。例如,沿着x轴方向对y轴进行剪切,矩阵为: ``` [1 shear_y 0] [0 1 0] [0 0 1] ``` **5. 组合变换** 仿射变换可以组合应用,通过矩阵乘法实现多个变换的复合。例如,先旋转后平移,只需将旋转矩阵与平移矩阵相乘,然后用结果矩阵作用于坐标点。 **6. 在编程中的应用** 在编程中,如OpenGL、DirectX等图形库,都提供了实现仿射变换的接口。例如,OpenGL中的`glTranslatef`、`glRotatef`和`glScalef`函数分别用于平移、旋转和缩放。开发者可以结合这些函数,构建出复杂的图形变换效果。 **7. 图像处理中的应用** 在图像处理中,仿射变换常用于图像的几何校正,如纠正倾斜、拉伸或压缩图像。例如,对扫描文档的矫正,或者在拍摄过程中因镜头畸变导致的图像变形修复。 **8. 实际案例** 在CAD设计、游戏开发、3D建模等领域,仿射变换用于构建和操纵对象的位置、方向和大小。同时,在地图投影中,也经常使用仿射变换将球面地理坐标转换为平面坐标。 仿射变换是计算机图形学中的基本工具,它允许我们灵活地处理几何对象,实现各种视觉效果和实用功能。理解和掌握仿射变换对于进行2D和3D图形编程至关重要。通过文档《仿射变换.doc》可以更深入地学习其原理和具体实现方法。
2025-11-07 08:16:04 31KB 源码
1
如何使用PLECS仿真工具复现IEEE顶刊中关于DAB变换器峰值电流前馈控制策略的研究成果。首先简述了PLECS仿真的特点及其在电力电子电路设计中的应用,接着重点讲解了DAB变换器的工作原理和峰值电流前馈控制策略的具体实施步骤,包括模型建立、参数设定、控制逻辑配置等方面的内容。文中还给出了部分关键代码片段,用于指导读者完成从建模到仿真的全过程。最后对整个流程进行了总结,并对未来发展方向提出了展望。 适合人群:从事电力电子领域的研究人员、工程师以及相关专业学生。 使用场景及目标:适用于希望深入了解DAB变换器内部机制及其先进控制方法的人群;旨在通过具体实例加深对理论的理解,掌握PLECS仿真技巧,从而提升个人科研水平和技术能力。 其他说明:文中提供的代码片段有助于读者快速上手实践,同时鼓励读者在此基础上进一步探索和创新。
2025-10-31 12:58:02 16.73MB
1
PLECS仿真软件在电力电子领域的应用,特别是针对ISOP结构的DAB(Dual Active Bridge)变换器的SPS(Split Power Stage)双闭环控制策略。文章首先概述了PLECS仿真的特点和优势,接着阐述了ISOP DAB变换器的工作原理及其优点,重点讨论了SPS双闭环控制策略的具体实现方式。最后,文章探讨了PLECS仿真与IEEE顶刊TPE复现之间的关系和挑战,强调了仿真结果的准确性和可靠性。 适合人群:从事电力电子研究和技术开发的专业人士,尤其是对DAB变换器和SPS双闭环控制感兴趣的科研人员和工程师。 使用场景及目标:适用于希望深入了解PLECS仿真工具的应用、ISOP DAB变换器的工作机制以及SPS双闭环控制策略的设计和实现的研究人员。目标是提升对电力电子系统仿真和控制策略的理解,促进相关技术的发展。 其他说明:文章不仅提供了理论背景,还结合了具体的仿真案例,有助于读者更好地理解和应用所介绍的技术。
2025-10-31 12:56:55 6.65MB 电力电子 ISOP
1
离散傅里叶变换(DFT)及其快速算法是数字信号处理领域中的核心概念,广泛应用于音频、图像处理以及通信工程。本节将详细讲解DFT的起源、性质及其相关变换,包括DFS(离散傅里叶级数)、Z变换、IDFT(逆离散傅里叶变换)和FFT(快速傅里叶变换)。 DFT是离散时间信号的傅里叶变换,用于将无限长或周期性的离散信号转换到频域进行分析。对于一个有限长的离散序列 \( x[n] \),其DFT定义为: \[ X[k] = \sum_{n=0}^{N-1} x[n] e^{-j 2\pi kn/N} \] 其中 \( N \) 是序列的长度,\( k \) 表示频域的离散点,\( j \) 是虚数单位。DFT提供了一种将时域信号转换为离散频率成分的方法,便于分析信号的频谱特性。 DFS是DFT的一个特例,适用于周期性离散信号,它基于傅里叶级数的概念,通过离散频率项来表示周期性信号。DFS与DTFT(离散时间傅里叶变换)的区别在于DFS的频谱是离散的,而DTFT的频谱是连续的。 Z变换是一种将离散序列转换为复频域的数学工具,它与DTFT和DFS有着密切关系。Z变换为: \[ X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n} \] 在某些条件下,Z变换可以转化为DTFT或者DFS,提供了解析信号特性的另一种途径。 IDFT是DFT的逆变换,用于将频域表示的信号还原回时域。它的公式为: \[ x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2\pi kn/N} \] FFT是DFT的快速算法,极大地提高了计算效率。它利用了DFT的对称性和分治策略,将DFT的复杂度从 \( O(N^2) \) 降低到 \( O(N \log N) \),使得大规模数据的傅里叶变换变得可行。 在实际应用中,如MATLAB等软件通常内置了FFT函数,方便用户快速计算DFT并进行频谱分析。例如,对于一个信号序列,可以使用MATLAB的`fft`函数计算其DFT,然后通过`ifft`函数进行反变换回到时域。 总结四种傅里叶变换形式: 1. 连续傅里叶变换(FT):非周期连续时间信号,频域连续。 2. 傅里叶级数(FS):周期连续时间信号,频域离散。 3. 离散时间傅里叶变换(DTFT):非周期离散时间信号,频域连续。 4. 离散傅里叶级数(DFS):周期离散时间信号,频域离散。 每种变换都有其适用的场景,选择合适的变换可以更有效地分析和处理不同类型的信号。在数字信号处理中,DFT和FFT因其高效性和广泛的应用性,成为了不可或缺的工具。
2025-10-30 16:48:39 5.25MB IDFT FFT IFFT
1
内容概要:本文详细介绍了双有源桥(DAB)变换器的设计与实现,涵盖从PLECS仿真到硬件落地的全过程。首先探讨了不同调制策略(单移相调制SPS和扩展移相调制EPS)及其在储能系统快速充放电场景中的应用,展示了具体的代码配置方法。接着比较了自抗扰控制(ADRC)与传统PID控制算法的优劣,并提供了MATLAB和PLECS中的实现代码。随后讨论了环路分析的重要性,强调了Bode图在零极点补偿中的作用。最后分享了硬件实现的关键注意事项,包括高频变压器设计、氮化镓器件驱动、电流采样方法以及PCB布局技巧。 适合人群:从事电力电子、储能系统设计的技术人员,特别是对DAB变换器感兴趣的工程师。 使用场景及目标:适用于需要高效双向能量转换的储能系统,如电动汽车V2G应用、光伏储能等。目标是帮助读者掌握DAB变换器的设计原理和技术细节,提高系统性能和可靠性。 其他说明:文中提供的代码片段和实践经验有助于读者更好地理解和应用相关技术。同时提醒读者在实际操作中需要注意的一些常见问题和解决方案。
2025-10-28 22:46:26 589KB
1