主要介绍了Python中Numpy包的安装与使用方法,结合简单实例形式分析了Python使用pip命令在线与离线whl包安装,以及使用numpy打印随机数矩阵的操作技巧,需要的朋友可以参考下
2022-05-11 11:18:17 41KB Python Numpy包 安装 使用
1
源来源:https://www.lfd.uci.edu/~gohlke/pythonlibs/#cvxopt 本版本兼容性好,可以直接安装cvxopt,详细说明见我的博客 版本匹配: numpy-1.16.3+mkl-cp36-cp36m-win_amd64.whl cvxopt-1.2.3-cp36-cp36m-win_amd64.whl
2022-04-25 00:04:42 798KB cvxopt python numpy svm
1
说明:本文档所有内容来源于网络 https://www.numpy.org.cn/user/ 目录 1. NUMPY 介绍 1 1.1 什么是 NUMPY? 1 1.2 为什么 NUMPY 这么快? 3 1.3 还有谁在使用 NUMPY? 3 2. 快速入门教程 4 2.1 先决条件 4 2.2 基础知识 4 2.2.1一个例子 5 2.2.2 数组创建 6 2.2.3 打印数组 8 2.2.4 基本操作 10 2.2.5 通函数 13 2.2.6 索引、切片和迭代 14 2.3 形状操纵 18 2.3.1改变数组的形状 18 2.3.2 将不同数组堆叠在一起 20 2.3.3 将一个数组拆分成几个较小的数组 22 2.4 拷贝和视图 23 2.4.1 完全不复制 23 2.4.2 视图或浅拷贝 24 2.4.3 深拷贝 25 2.4.4 功能和方法概述 26 2.5 LESS 基础 26 广播(Broadcasting)规则 27 2.6 花式索引和索引技巧 27 2.6.1使用索引数组进行索引 27 2.6.2使用布尔数组进行索引 31 2.6.3 ix_()函数 34 2.6.4使用字符串建立索引 37 2.7线性代数 37 简单数组操作 37 2.8技巧和提示 38 2.8.1“自动”整形 39 2.8.2矢量堆叠 39 2.8.3直方图 40 2.9进一步阅读 41 3. NUMPY 基础知识 42 3.1 数据类型 42 3.1.1 数组类型之间的转换 42 3.1.2 数组标量 45 3.1.3 溢出错误 46 3.1.4 扩展精度 47 3.2 创建数组 47 3.2.1 简介 48 3.2.2 将Python array_like对象转换为Numpy数组 48 3.2.3 Numpy原生数组的创建 48 3.2.4 从磁盘读取数组 50 3.3 NUMPY与输入输出 51 3.3.1 定义输入 51 3.3.2 将行拆分为列 52 3.3.3 跳过直线并选择列 54 3.3.4 选择数据的类型 55 3.3.5 设置名称 56 3.3.6 调整转换 59 3.3.7 快捷方式函数 62 3.4 索引 62 3.4.1 赋值与引用 63 3.4.2 单个元素索引 63 3.4.3 其他索引选项 64 3.4.4 索引数组 65 3.4.5 索引多维数组 66 3.4.6 布尔或“掩码”索引数组 67 3.4.7 将索引数组与切片组合 69 3.4.8 结构索引工具 70 3.4.9 为索引数组赋值 71 3.4.10 在程序中处理可变数量的索引 72 3.5 广播 73 3.6 字节交换 78 3.6.1字节排序和ndarrays简介 78 3.6.2 更改字节顺序 80 3.7 结构化数组 82 3.7.1 介绍 82 3.7.2 结构化数据类型 83 3.7.3 索引和分配给结构化数组 88 3.7.4 记录数组 96 3.7.5 Recarray Helper 函数 98 3.8编写自定义数组容器 116 3.9子类化NDARRAY 124 3.9.1 介绍 124 3.9.2 视图投影 125 3.9.3 从模板创建 126 3.9.4 视图投影与从模板创建的关系 126 3.9.5 子类化的含义 126 3.9.6 简单示例 —— 向ndarray添加额外属性 132 3.9.7 稍微更现实的例子 —— 添加到现有数组的属性 134 3.9.8 __array_ufunc__ 对于ufuncs 135 3.9.9 __array_wrap__用于ufuncs和其他函数 139 3.9.10 额外的坑 —— 自定义的 __del__ 方法和 ndarray.base 142 3.9.11 子类和下游兼容性 143 4. 其他杂项 144 4.1 IEEE 754 浮点特殊值 144 4.2 NUMPY 如何处理数字异常的 146 4.3 示例 146 4.4 连接到 C 的方式 147 4.4.1 不借助任何工具, 手动打包你的C语言代码。 147 4.4.2 Cython 148 4.4.3 ctypes 148 4.4.4 SWIG(自动包装发生器) 149 4.4.5 scipy.weave 149 4.4.6 Psyco 149 5. 与MATLAB比较 149 5.1 介绍 150 5.2 一些关键的差异 150 5.3 'ARRAY'或'MATRIX'?我应该使用哪个? 151 5.3.1 简答 151 5.3.2 长答案 151 5.4 MATLAB 和 NUMPY粗略的功能对应表 153 5.4.1 一般功能的对应表 153 5.4.2 线性代数功能对应表 154 5.5 备注 161 5.6 自定义您的环境 163 5.7 链接 164 6. 从源代码构建 164 6.1 先决条件 164 6.2 基本安装 164 6.3 测试 165 并行构建 165 6.4 FORTRAN ABI不匹配 165 6.4.1 选择fortran编译器 166 6.4.2 如何检查BLAS / LAPACK /地图集ABI 166 6.5 加速BLAS / LAPACK库 166 6.5.1 BLAS 166 6.5.2 LAPACK 167 6.5.3 禁用ATLAS和其他加速库 167 6.6 提供额外的编译器标志 168 6.7 使用ATLAS支持构建 168 7. 使用NUMPY的C-API 168 7.1 如何扩展NUMPY 168 7.1.1 编写扩展模板 169 7.1.2 必需的子程序 169 7.1.3 定义函数 171 7.1.4 处理数组对象 175 7.1.5 示例 180 7.2 使用PYTHON作为胶水 182 7.2.1 从Python调用其他编译库 183 7.2.2 手工生成的包装器 183 7.2.3 f2py 184 7.2.4 用Cython 191 7.2.5 ctypes 196 7.2.6 您可能会觉得有用的其他工具 206 7.3 编写自己的UFUNC 208 7.3.1 创建一个新的ufunc 208 7.3.2 示例非ufunc扩展名 209 7.3.3 一种dtype的NumPy ufunc示例 215 7.3.4 示例具有多个dtypes的NumPy ufunc 221 7.3.5 示例具有多个参数/返回值的NumPy ufunc 230 7.3.6 示例带有结构化数组dtype参数的NumPy ufunc 235 7.4 深入的知识 241 7.4.1 迭代数组中的元素 242 7.4.2 用户定义的数据类型 246 7.4.3 在C中对ndarray进行子类型化 249
2022-04-11 09:18:32 2.57MB Python Numpy 用户指南 帮助文档
1
Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。这篇文章主要介绍了Python numpy 常用函数总结,需要的朋友可以参考下
2022-04-05 11:49:15 55KB python numpy 常用函数 numpy
1
Python(+numpy)实现对9*9数独问题的求解 利用Python(+numpy库)递归实现对9*9数独问题的求解 (=== 分享一下这两天断断续续写的解9*9数独问题的经历及源码,第一次写博客,很多功能不太会用,也会有很多不到位的地方,谢大家指正!===) # 整活 百度 wd=世界最难数独 输入方式及运行结果,运行时间(完全遍历结束,时间戳分别在递归函数前后)为0.88秒的亚子(膨胀) # 以下正文 回顾一下 数独(Sudoku) 无论是4*4还是9*9的数独游戏规则很简单很粗暴,拿9*9数独来说,规则可概括为 9组 1-9 共 81个数字(包含已给出的数字)填入 9*9 的方格
2022-04-04 19:22:14 326KB mp num numpy
1
今天小编就为大家分享一篇Python 获取numpy.array索引值的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2022-04-03 18:14:24 30KB Python numpy array 索引值
1
稳健的回归和离群值检测 使用贝叶斯迭代将已知模型稳固地拟合到数据。 这两个实现使用 兰萨克 M估计 健壮的部分实现了,而功能却没有实现。 模型拟合是从scipy.minimize借用的。 随意使用其他模型拟合方法。 要求 numpy是robust_lsq.py的唯一先决条件。 robust_lsq.py需要最小二乘拟合函数(或其他拟合函数),例如scipy.optimize.minimize 。 请参阅示例models.py 。 robust_lsq.py 麻木 models.py 科学的 麻木 test.py 科学的 麻木 matplotlib 设置 请运行test.py以获取使用贝叶斯估计将直线稳固地拟合到数据的示例。 它是如何工作的? 关键思想是确定最适合模型的样本。 使用贝叶斯更新。 贝叶斯规则由下式给出: P(数据/模型)= P(模型/数据)* P(数据)/ p(模型)
2022-04-03 01:36:34 67KB python numpy iteration fitting
1
CryptoForecasting:加密货币价格预测
2022-03-29 23:46:01 9.57MB python numpy scikit-learn scipy
1
如下所示: import numpy new_list = [i for i in range(9)] numpy.array(new_list).reshape(3,3) 借助numpy库; 以上这篇python numpy 一维数组转变为多维数组的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持软件开发网。 您可能感兴趣的文章:python二维列表一维列表的互相转换实例Python的numpy库中将矩阵转换为列表等函数的方法python的dataframe转换为多维矩阵的方法Python嵌套列表转一维的方法(压
2022-03-26 19:55:17 36KB mp num numpy
1
主要介绍了详解Python中的Numpy、SciPy、MatPlotLib安装与配置,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
2022-03-25 18:48:01 208KB Python Numpy SciPy MatPlotLib
1