在本文中,我们考虑了为连续时间非线性系统开发控制器的问题,其中控制该系统的方程式未知。 利用这些测量结果,提出了两个新的在线方案,这些方案通过两个基于自适应动态编程(ADP)的新实现方案来合成控制器,而无需为系统构建或假设系统模型。 为了避免对系统的先验知识的需求,引入了预补偿器以构造增强系统。 通过自适应动态规划求解相应的Hamilton-Jacobi-Bellman(HJB)方程,该方程由最小二乘技术,神经网络逼近器和策略迭代(PI)算法组成。 我们方法的主要思想是通过最小二乘技术对状态,状态导数和输入信息进行采样以更新神经网络的权重。 更新过程是在PI框架中实现的。 本文提出了两种新的实现方案。 最后,给出了几个例子来说明我们的方案的有效性。 (C)2014 ISA。 由Elsevier Ltd.出版。保留所有权利。
2023-03-21 17:45:57 901KB Model-free controller; Optimal control;
1
随着间歇性电源(分布式风电、光伏)在中、低压配电网中渗透率的提高,多个微电网可能共存于一个区域配电网中,各微电网间能量互济与协调控制的微电网群技术开始引起广泛的关注。以微电网研究为基础,分析了微电网群的典型特征及拓扑结构。以微电网群功率波动为研究对象,建立了微电网群功率波动熵值的动态调度模型,采用量子粒子群优化算法进行求解实现优化控制。仿真结果验证了所提微电网群功率优化控制方法的正确性和有效性。
1
机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里我们将为您总结一下常见的机器学习算法,以供您在工作和学习中参考。机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合
1

为了求解有限时域最优控制问题, 自适应动态规划(ADP) 算法要求受控系统能一步控制到零. 针对不能一步控制到零的非线性系统, 提出一种改进的ADP 算法, 其初始代价函数由任意的有限时间容许序列构造. 推导了算法的迭代过程并证明了算法的收敛性. 当考虑评价网络的近似误差并满足假设条件时, 迭代代价函数将收敛到最优代价函数的有界邻域. 仿真例子验证了所提出方法的有效性.

1
详细介绍了风电功率预测现状,并详尽介绍了风电功率预测的方法,及其原理和建模方法,推荐!
2023-03-09 17:21:08 3.95MB 风电功率 预测 时间序列 人工神经网络
1
自适应动态规划(近似动态规划)——ADP MATLAB_MATLAB编程
1
基于人工神经网络(ANN)技术,采用MATLAB作为开发平台,建立了激光熔覆参数与熔覆层特征及性能之间的关系模型。模型以激光功率、扫描速度、光斑直径、涂层成分配比作为输入参数,以熔覆层硬度、熔覆层宽度和高度作为输出参数,对熔覆层的特征与性能进行了预测。结果表明,该模型的平均误差较小,网络训练后检验精度较高,具有较好的预测能力。该模型能够用于预测铝合金表面激光熔覆层的特征与性能。
2023-02-23 18:33:09 1007KB 激光技术 激光熔覆 铝合金 人工神经
1
人工神经网络技术及其应用 人工神经网络技术及其应用. 中国知网下载的,,,,,,,
2023-02-17 14:33:20 4.17MB 人工神经网络技术及其应用
1
mk matlab代码基于人工神经网络的前向建模 这是 Moghadas JAG 2020 论文的配套 MATLAB 代码(请参阅下面的参考资料)。 此代码包含以下脚本: MK_ANN_Data:读取训练模型和拆分数据用于 ANN 训练的程序。 ANN_Training:训练 ANN 以创建代理正向建模的程序。 模拟:从基于 ANN 的前向模型计算 EMI 前向响应的程序。 参考 Moghadas, D., Behroozmand, AA, Christiansen, AV, 2020,使用基于神经网络的正向求解器进行土壤电导率成像:应用于大规模贝叶斯电磁反演,应用地球物理学杂志,DOI:10.1016/j.jappgeo。 2020.104012 接触 Davood Moghadas () 艾哈迈德。 A. 贝鲁兹曼 ()
2023-02-15 23:40:20 8.7MB 系统开源
1