1、yolov5破损绝缘子检测,包含训练好的道路指示牌识别权重,以及PR曲线,loss曲线等等,在绝缘子缺陷检测数据集中训练得到的权重,目标类别名为break_insulator共一个类别;并附绝缘子缺陷检测数据集,标签格式为txt和xml两种,分别保存在两个文件夹中 3、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 4、采用pytrch框架,python代码
输电线路绝缘子检测红外图像数据集(VOC标签,900多张图像).zip
1、YOLO破损绝缘子检测数据集,500多张使用lableimg标注软件,标注好的真实场景的高质量图片数据,图片格式为jpg,标签有两种,分别为VOC格式和yolo格式,分别保存在两个文件夹中,可以直接用于YOLO系列的绝缘子缺陷目标检测;数据场景丰富;类别为break_insulator共一个类别目标 2、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743
1、yolov5电塔绝缘子检测,包含yolov5s和yolov5m两种训练好的电塔绝缘子检测权重,以及PR曲线,loss曲线等等,在一千张电塔绝缘子检测数据集中训练得到的权重,有pyqt界面,目标类别为Insulator共1个类别,并附1000张电塔绝缘子检测数据集,标签格式为voc和yolo两种格式,分别保存在两个文件夹中 2、pyqt界面可以检测图片、视频、调用摄像头 3、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 4、采用pytrch框架,python代码
基于YoloV4的绝缘子目标检测程序源代码+数据集+训练模型,人工智能课程设计作业。文件结构 . │ predict.py # 对图片进行预测 │ train.py # 训练模型 │ voc_annotation.py # 对VOC数据集处理导出索引 │ yolo.py # 预测程序的子程序 │ ├─img # 存放预测后的图像 ├─logs # 存放训练的模型文件 ├─model_data # 存放预训练模型 │ new_classes.txt # 类别的名称 │ yolo_anchors.txt # 先验框的大小 │ ├─nets # 网络结构 │ CSPdarknet.py # CSPdarkNet53主干特征网络 │ yolo4.py # FPN、SPP等网络 │ yolo_training.py # 模型训练子程序 │ ├─utils # 数据加载、NMS等 │ dataloader.py # 数
35-220kV支柱瓷绝缘子技术规范书.doc.doc
2022-05-17 17:06:11 195KB 文档资料
无人机航拍输电线路配网绝缘瓷瓶检测图像数据集(含VOC标签,数量不多)
2022-05-12 09:04:59 402.57MB 目标检测 输电线路 配网 绝缘子
人工智能-机器学习-高精度快速边界元法及其在绝缘子电场计算中应用研究.pdf
2022-05-05 13:07:35 6.07MB 人工智能 机器学习 文档资料
人工智能-机器学习-高电压绝缘子绝缘性能在线智能检测方法的研究.pdf
2022-05-05 09:09:20 3.47MB 人工智能 文档资料 机器学习
由于电力线绝缘子的故障导致输电系统的故障,因此广泛使用基于空中平台的绝缘子检查系统。 绝缘子缺陷检测是针对航空图像中的复杂背景执行的,这提出了一个有趣但具有挑战性的问题。基于手工特征或浅层学习技术的传统方法只能在特定的检测条件下(例如何时)定位绝缘子并检测故障。在某些对象范围或特定照明条件下,具有足够的先验知识,背景干扰小。 本文讨论了使用航空图像自动检测绝缘子缺陷,准确定位从实际检查环境捕获的输入图像中出现的绝缘子缺陷的方法。我们提出了一种新颖的深度卷积神经网络(CNN)。级联体系结构,用于执行定位和检测。绝缘子中的缺陷。 级联网络使用基于区域提议网络的CNN将缺陷检查转换为两级目标检测问题。 为了解决实际检查环境中缺陷图像的稀缺性,还提出了一种数据增强方法,该方法包括以下四个操作:1)仿射变换; 2)仿射变换; 2)仿射变换。 2)绝缘子分割和背景融合; 3)高斯模糊; 4)亮度转换。 使用标准绝缘子数据集,缺陷检测精度和建议方法的召回率分别为0.91和0.96,并且可以成功检测到各种条件下的绝缘子缺陷。 实验结果表明,该方法符合绝缘子缺陷检测的鲁棒性和准确性要求。
2022-05-05 02:08:54 1.25MB Aerial image;convolutional neural network;data
1