1976年11月30日到12月2日,加利福尼亚州卡尔沃市制造工程师协会发起了一次工业激光会议,会议的重点是对20千瓦以上的高功率激光焊接问题进行首次公开评述。评述工作由海军研究所进行。联合工艺公司研究中心的巴纳斯(C. M. Banas)在会上谈及了用77千瓦光束以每分钟50英寸的速率焊接二英寸厚的钢板的情况。其它一些论文包括对工业环境中的激光危害问题,激光焊接需要解决的技术问题,以及CO2激光器的工业潜力问题的评述。
2021-02-08 10:03:24 1.91MB
1
提出一种无源电检测装置,对A304不锈钢YAG激光焊接过程中的等离子体电信号进行检测,并利用高速摄像机对等离子体的形态进行观察。结果表明,不同焊接模式下的等离子体电信号具有不同的时域特征。对不同焊接模式下的等离子体电信号特征进行理论与试验分析,发现等离子体电信号受等离子体效应和鞘层效应的共同影响;小孔的形成与否是造成不同焊接模式下等离子体电信号特征不同的决定性因素。
2021-02-07 12:06:25 10.43MB 激光技术 激光焊接 激光等离 电信号
1
采用不同比例的氮气/氩气混合保护气,对2 mm厚的SUS301L奥氏体不锈钢进行了CO
2021-02-07 12:05:56 12.87MB 激光技术 激光焊接 氮气保护 奥氏体不
1
利用6 kW光纤激光器对1.5 mm厚冷轧800 MPa级双相钢进行激光拼焊试验,研究激光焊接接头的显微组织演变规律、显微组织对显微硬度及疲劳性能的影响规律。结果表明,焊接接头主要包括焊缝区(WZ)、粗晶区(CGHAZ)、细晶区(FGHAZ)、混晶区(MGHAZ)和回火区(TZ),其中焊缝区和粗晶区显微组织均为马氏体,但焊缝区内的原始奥氏体晶界保留着柱状晶的生长形态,粗晶区内的原始奥氏体晶界呈多边形生长;细晶区和混晶区均为铁素体和马氏体,但细晶区的显微组织更为精细;回火区主要由铁素体和回火马氏体组成。混晶区和回火区显微硬度均低于母材,共同组成了焊接接头的软化区。由于软化区尺寸相对较窄(0.4 mm)且硬度降低幅度低(~6.8%),拉伸断裂位置出现在母材。在应力比为0.1的拉拉疲劳条件下,母材和焊接接头的疲劳极限分别为545 MPa和475 MPa,疲劳断裂未出现在软化区。母材中的疲劳裂纹在铁素体与马氏体两相界面萌生并扩展;而焊接接头中的疲劳裂纹则在焊缝中的奥氏体晶界上或马氏体板条内萌生,沿着焊缝中心处柱状原始奥氏体晶界的交汇处切断马氏体板条束扩展。
2021-02-07 12:05:55 28.66MB 激光技术 双相钢 激光焊接 显微硬度
1
系统研究了双光束焊接过程中能量比对焊缝成形以及能量利用率的影响,采用高速摄像技术实时观察了不同能量比下的熔池行为,分析了能量比对双光束焊接特性的影响机制。结果表明,随着能量比增大,双光束焊缝熔深先减小后增大,熔宽变化规律与之相反,并在能量比为50/50时获得最小熔深和最大熔宽。不同能量比下能量利用率差别较大,能量比为20/80和50/50时分别获得最大值32.7%和最小值27.8%。熔池尺寸同样受能量比的影响,随着能量比增大,熔池长度先增大后减小,而宽度一直减小。能量比对双光束焊接特性的影响主要归因于焊接过程中匙孔状态以及熔池流动方式的改变。
2021-02-06 20:04:02 8.39MB 激光技术 激光加工 能量比 双光束
1