内容概要:本文详细介绍了一个基于改进蜣螂算法(MSADBO)优化卷积长短期记忆神经网络(CNN-LSTM)的多特征回归预测项目。项目旨在通过优化超参数选择,提高多特征回归问题的预测精度。主要内容包括:项目背景、目标与意义、挑战及解决方案、特点与创新、应用领域、模型架构及代码示例。项目通过MSADBO算法自动优化CNN-LSTM模型的超参数,解决了传统方法效率低、易陷入局部最优解等问题。此外,项目还探讨了如何通过数据预处理、特征提取、模型架构设计等手段,提高模型的计算效率、可解释性和适应性。; 适合人群:具备一定机器学习和深度学习基础,对优化算法和时间序列预测感兴趣的科研人员及工程师。; 使用场景及目标:①提高多特征回归问题的预测精度;②优化超参数选择,减少手动调参的工作量;③改进优化算法,提升全局搜索能力;④拓展应用领域,如金融预测、气候变化预测、能源管理等;⑤提高计算效率,减少模型训练时间;⑥增强模型的可解释性和适应性,提升实际应用中的表现。; 其他说明:此项目不仅注重理论研究,还特别考虑了实际应用的需求,力求使模型在真实场景中的表现更为优异。项目代码示例详细展示了从数据预处理到模型预测的完整流程,为读者提供了实践指导。
2025-08-05 21:52:42 44KB Python 超参数优化
1
内容概要:本文介绍了基于深度混合核极限学习机(DHKELM)的回归预测方法及其优化算法。DHKELM结合了极限学习机和混合核技巧的优点,适用于处理复杂的非线性问题。文中详细解释了DHKELM的工作原理,包括非线性变换、特征提取和降维。优化算法部分主要介绍了北方苍鹰NGO算法以及其他替代方法,如梯度下降和遗传算法。此外,还提供了Python代码示例,展示了模型的训练和预测过程。最后,通过对多个数据集的实验验证,证明了DHKELM在非线性问题处理方面的优越性能。 适合人群:从事机器学习、数据分析和人工智能领域的研究人员和技术人员。 使用场景及目标:适用于需要处理复杂非线性数据的回归预测任务,旨在提高预测的准确性和稳定性,缩短模型训练时间。 其他说明:尽管DHKELM表现出色,但在处理高维数据时可能需要额外的特征提取方法,优化算法的选择也会显著影响模型性能。未来研究方向包括探索DHKELM在更多领域的应用以及优化方法的改进。
2025-08-01 20:28:56 533KB 深度学习 极限学习机 启发式优化
1
内容概要:本文介绍了名为BEVFormer的一种新框架,其特点是在三维视觉感知任务中,特别是多相机图像的三维检测和地图分割,能够从多个摄像头输入中生成鸟瞰图(BEV)特征。BEVFormer充分利用空间和时间信息,通过网格状的BEV查询向量与跨相机视野及历史信息进行交互,并设计了专门的注意力模块,实现了高效的任务性能,特别是在nuScenes测试集上的表现超越了现有技术水平。 适合人群:从事自动驾驶、机器视觉研究的专业人士,以及对基于多传感器融合技术感兴趣的学者。 使用场景及目标:主要用于改善自动驾驶系统中的周围环境感知能力,尤其在低能见度条件下的目标速度估计和遮挡目标检测等方面展现出优势。该方法旨在为自动驾驶中的感知任务提供更精准的数据支持,提高驾驶安全性。 其他说明:本文提出的技术不仅有助于学术界的理论研究,在工业界也有广泛应用前景,比如高级辅助驾驶系统的开发、智能交通系统的建设等。
2025-07-31 15:53:08 1.55MB Transformers 自动驾驶 深度学习
1
半自动图像分割标注 用点击与边框做为SAM的提示 手动标注 按住左键拖动鼠标,像绘图一样标注多边形 (每隔0.15 s 一个点) 标注调整 多边形调整 删除点或者调整多边形的遮挡关系 多边形可视化 预览语义分割/实例分割的掩膜 标注导出 支持的转换格式 ISAT标注导出为MSCOCO、 YOLO、 LabelMe及VOC (包含 XML)格式 界面语言切换 软件提供了中文与英文两种界面,可以随时切换。
2025-07-29 12:54:43 163.72MB 标注工具 深度学习
1
数据集是一个大规模的虹膜图像数据集,由中国科学院自动化研究所(CASIA)创建。该数据集包含来自 1000 名受试者的 20000 幅虹膜图像,每名受试者提供 20 幅图像。这些图像使用IKEMB-100 双眼虹膜相机采集,分辨率为 640×480 像素。数据集的特点:规模大:包含 1000 名受试者的虹膜图像,是首个公开的千人级虹膜数据集。图像质量高:使用先进的 IKEMB-100 相机采集,图像清晰,适合用于虹膜特征提取。多样性丰富:图像中存在多种类内变化,如眼镜佩戴、镜面反射等,增加了数据集的复杂性和实用性。虹膜识别算法研究:可用于开发和验证虹膜识别算法,包括图像预处理、特征提取、特征匹配等。分类与索引方法开发:适合用于研究虹膜特征的独特性,开发新的分类和索引方法。机器学习与深度学习:为深度学习模型(如卷积神经网络)提供丰富的训练数据,提升模型的准确性和鲁棒性。数据集为虹膜识别研究提供了宝贵的资源,帮助研究者深入探究虹膜特征的独特性和多样性,推动虹膜识别技术在生物特征识别领域的应用和发展。
2025-07-28 16:53:38 490.79MB 深度学习 机器学习 图像处理 计算机视觉
1
内容概要:本文详细介绍了UResNet模型的构建与实现。UResNet是一种结合了ResNet和UNet结构的深度学习模型,主要用于图像分割任务。该模型由多个模块组成,包括上采样模块(Up)、基础块(BasicBlock)、瓶颈块(BottleNeck)、VGG块(VGGBlock)以及可选的膨胀大核注意力模块(DLKA)。DLKA模块通过大核分支、小核分支和通道注意力机制来增强特征表示能力。UResNet的主干部分采用ResNet风格的残差连接,并在编码器-解码器架构中引入跳跃连接,从而有效融合多尺度信息。最后通过卷积层输出分类结果。; 适合人群:具备一定深度学习基础,特别是对卷积神经网络有一定了解的研发人员或学生。; 使用场景及目标:①研究和开发医学影像、遥感图像等领域的图像分割应用;②探索基于ResNet和UNet架构改进的新型网络设计;③理解DLKA模块的工作原理及其在提升模型性能方面的作用。; 阅读建议:由于该模型涉及较多的PyTorch代码实现细节,建议读者首先熟悉PyTorch框架的基本用法,同时关注各组件的功能及其之间的联系,在实践中逐步掌握整个网络的设计思路。此外,对于DLKA模块的理解可以帮助读者更好地优化模型性能。
1
deep learning 中文版 ,带书签
2025-07-26 23:04:11 30.63MB 深度学习
1
深度学习是人工智能领域的一个核心分支,它通过模拟人脑神经网络的工作原理,让计算机能够从大量数据中自动学习特征并进行预测。这份“深度学习 中文版”来源于github,是英文原版Deep Learning的中文翻译,为中文读者提供了便捷的学习资源。 深度学习的基本构成包括神经网络、损失函数、优化算法和激活函数等。神经网络是由多层节点(或称为神经元)组成的计算模型,每层神经元之间通过权重连接。这些节点模仿大脑神经元的工作方式,接收输入信号,经过处理后产生输出。在深度学习中,网络通常包含多个隐藏层,这些层可以逐层提取数据的抽象特征。 损失函数是衡量模型预测结果与真实结果之间差距的指标,常见的有均方误差(MSE)、交叉熵(Cross-Entropy)等。优化算法如梯度下降、随机梯度下降(SGD)、动量法(Momentum)、Adam等,用于调整网络中的权重参数,最小化损失函数,使模型预测更接近实际。 深度学习的应用广泛,包括图像识别、语音识别、自然语言处理(NLP)、推荐系统等。在图像识别中,卷积神经网络(CNN)因其对图像特征的高效提取能力而被广泛应用;在语音识别中,循环神经网络(RNN)和长短时记忆网络(LSTM)能够处理序列数据,适合语音的时序特性;在NLP领域,Transformer模型通过自注意力机制革新了语言模型的设计。 在实际应用中,深度学习的训练过程往往需要大量的标注数据和计算资源。GPU的并行计算能力极大地加速了神经网络的训练,使得深度学习得以快速发展。同时,模型的预训练和迁移学习策略也降低了对大量标注数据的依赖,通过在大规模无标注数据上预训练模型,然后在特定任务上进行微调,可以取得良好的效果。 GitHub作为一个开源社区,提供了许多深度学习项目、框架和库,例如TensorFlow、PyTorch、Keras等,便于开发者学习和实践。这份“深度学习 中文版”PDF文档,无疑是中文学习者了解和掌握深度学习理论和技术的重要资源。通过阅读和实践,可以深入理解深度学习的原理,并应用于实际项目中,推动人工智能技术的进步。
2025-07-26 22:58:31 26.72MB 深度学习
1
基于python的深度学习的人脸识别,识别率非常高,是一个国外友人写的,识别率非诚高
2025-07-26 14:37:06 26.58MB python 深度学习 开发语言 机器学习
1
通过利用pandas库对数据清洗等初步处理后以实现基本实体及实体关系的确认,可实现将现有数据导入neo4j数据库形成基本的图谱 接下来目标: 1.利用TensorFlow建立训练模型对【来源】,【用法用量】,【主治功能】,【性味】等存在大段文字的实体进行进一步的抽取,争取做到抽出准确词语。 2.利用远程监督的方式(或者是其他的方式),对实体关系进行抽取,目前要使用的技术工具还未知。 适用人群:学习不同技术领域的小白或进阶学习者;可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。
2025-07-25 13:46:03 13.45MB python tensorflow tensorflow 知识图谱
1