ADC上位机,使用stm32测量电压值,并在上位机上面显示
2024-06-20 18:46:39 8.34MB STM32 C#上位机
1
设有如下文法: S → A A → V:=E E → E + T | T T → T * F | F F → (E) | digit V → i 采用自上而下进行语法分析,并进行语义分析后翻译为四元式输出。
2024-06-17 23:15:28 7KB 自上而下 LL(1) 赋值语句翻译
1
私信博主免费获取真题解析以及代码
2024-06-16 15:34:10 5KB
1
对比有限差分法和打靶法求解非线性常微分方程两点边值问题的近似解: , 并将计算结果与精确解作图进行比较,并对比牛顿迭代法在这两种方法的应用情况。
2024-06-08 22:29:35 146KB 高等数值分析 有限差分法
1
阈值分割源码matlab 用于新型腹部数据集的皮肤分割的深度学习技术 介绍 该存储库提供了[]中研究的皮肤分割方法的代码,主要是Mask-RCNN,U-Net,全连接网络和用于阈值化的MATLAB脚本。 该算法主要是为了使用RGB图像对创伤患者进行腹部皮肤分割而开发的,这是正在进行的研究工作的一部分,该研究工作旨在开发用于创伤评估的自主机器人[] []。 机器人腹部超声系统具有摄像头查看的腹部区域,以及相应的分段式皮肤面罩。 腹部皮肤数据集的信息 该数据集包含从Google图像搜索在线检索的1,400幅腹部图像,这些图像随后进行了手动分段。 选择图像以保留不同种族的多样性,从而防止分割算法中的间接种族偏见; 700张图像代表肤色较深的人,其中包括非洲,印度和西班牙裔群体,而700张图像代表肤色较浅的人,例如高加索人和亚洲裔群体。 总共选择了400张图像来代表体重指数较高的人,在明亮和黑暗类别之间平均分配。 在数据集准备中,还考虑了个人之间的差异,例如头发和纹身的覆盖范围,以及阴影等外部差异。 图片尺寸为227x227像素。 皮肤像素占整个像素数据的66%,每个单个图像的平均值为54.4
2024-05-30 11:29:55 81.38MB 系统开源
1
基于SVD奇异值分解的机器学习算法 用于信号分析
2024-05-29 21:11:38 7.49MB
BRMM 类实现了用于模拟和估计有限混合模型参数的算法。 混合模型通常用于聚类分析,即将数据分组。 该模型专为包含异常值和/或缺失值的数据而设计。 BRMM 对象将每个原型建模为具有特定组件参数的重尾分布。 根据贝叶斯范式,参数配备了共轭先验分布。 该模型还包含表示数据中缺失值和数据质量的隐藏变量。 参数和隐藏变量的后验分布通过近似变分推理算法进行估计。 此提交包括一个测试函数,该函数生成一组合成数据并从这些数据中学习模型。 测试函数还绘制根据模型聚类的数据,以及每次迭代后数据的边际对数似然的变分下界。 如果您发现此提交对您的研究/工作有用,请引用我的 MathWorks 社区资料。 如果您有任何技术或应用相关问题,请随时直接与我联系。 指示: 下载此提交后,在您的 MatLab 工作目录中提取压缩文件并运行测试函数 (brmmtest.m) 进行演示。
2024-05-29 20:06:30 16KB matlab
1
对SAR成像的RD算法进行仿真,使用8点sinc插值算法进行距离徙动矫正,并能实现成像结果进行距离向和方位向波形分析。
2024-05-20 00:59:03 729KB sinc插值
1
是压缩感知中迭代硬阈值算法的代码,和在MATLAB上进行仿真。
2024-05-17 13:40:14 3KB
1
1. 这是作者花费一周的时间,使用python写出的策略迭代和值迭代强化学习算法,以一个完整的项目发布,为解决“已知马尔科夫决策过程五元组,求最优策略”这类问题提供了算法与通用框架 2. 项目采用面向对象架构和面向抽象编程,用户可以在抽象类基础上,利用继承机制,定义新的具体环境类,测试该算法的有效性。项目还给出了unittest.Testcase的测试代码。 3. 在该项目中算法名称分别对应类:ValueIterationAgent和PolicyIterationAgent(都继承自MdpAgent),马尔科夫决策模型已知的环境抽象类MdpEnv 4. 为展示该算法的有效性,定义了一个GridWorldEnv的具体类,实现了作者博文中“在格子世界中寻宝”的最优策略的学习,并定义了一个GridWorldUI类可视化最优策略及基于最优策略的,用户可以运行住文件main.py 5. 该项目源码的最大特点是:架构合理,可维护性好,可读性强。你不断能学到这两个强化学习算法的精髓,也能够学到什么是好的python程序架构。 6.注意先阅读里面的readme.txt文件。
2024-05-08 21:56:25 329KB 强化学习 策略迭代 面向对象 python
1