说明: 使用三种图卷积做一个简单的交通流量预测模型。 我所用的环境: PyTorch=1.4.0 torchvision=0.5.0 cudatoolkit=10.1 cudnn=7.6.3 若哪里不足请指出来,共同学习。
2021-12-31 17:57:39 39.31MB 附件源码 文章源码
1
小波神经网络的时间序列预测——短时交通流量预测
1
【预测模型】基于小波神经网络的短时交通流量预测matlab源码.md
2021-12-29 13:55:36 4KB 算法 源码
1
交通流量预测项目 model 模型包 目前主要的用于执行预测的模型都存储在此仓库中,主要包含一下的类型 SVR及GA_SVR LSSVR及GA_LSSVR KNN_GA_LSSVM BP及BP_GA plot 绘图包 目前主要用于指定需要绘制的对象图表,以及对于数据图表的布局指定。 Line 线型图 Wireframe 线框图 data 数据包 目前主要用于指定数据处理的pipe流程,用于实现对于数据流程的预处理,以及输出等。 lib 基础库 构建程序所需的基础构件,包含但不限于程序元类包、程序类的基础原型、部分算法原型。 tasks 库 支撑了基础库中的任务执行流程,主要用于执行任务 列出可执行任务 python -m tasks list 执行任务操作 python -m tasks start ... 绘制图表 绘制流量预测
2021-12-27 11:43:47 41.66MB 附件源码 文章源码
1
广州交通流数据集 时间、车速、每十分钟记录一次
2021-12-04 12:01:12 16.75MB 数据集 交通流量
1
精确的预测结果可以为通勤者提供合理的出行建议,并进一步为交通管理提供帮助。现有的研究深入深度学习方法在时空特征提取方面已经有了显着的进展,诸如图卷积神经网络,长短期记忆网络模型等在此过程中发挥了重要的作用。而,仅将这些方法应用到具体的路网场景下的交通流量预测问题是不够合理的的,本文提出了一种优化的时空交通流量预测模型,将线图转换到道路交通拓扑结构的建造过程,并利用GCN实现了更有效的路网空间特征提取能力,特别是与传统的卷在真实的大型数据集的实验结果显示中,采用现有的较大模型,本文提出的模型对于交通流量的时空特征提取能力更强,有更准确的预测效果。
2021-12-01 20:37:59 391KB 研究论文
1
GCN_predict-Pytorch 交通流量预测。 用PyTorch实现图卷积网络(GCN,GAT,Chebnet) 要求: -火炬 -脾气暴躁 -熊猫 -Matplotlib 数据集示例: 数据集由Caltrans绩效评估系统(PEMS-04)收集 数量:307个探测器 日期:2018年1月至2月(2018.1.1——2018.2.28) 特色:流动,占据,速度。 探索数据分析: 1,具有流量,占用和速度三个特点,一是对数据分布进行可视化分析 2.运行代码:python data_view.py 3)每个节点(检测器)都有三个特征,但是两个特征的数据分布基本上是固定的,因此我们只采用一维特征。 读取数据集: 在traffic_dataset.py文件中,get_adjacent_matrix和get_flow_data函数用于读取相邻的矩阵和流数据。 模型训练: 在tra
2021-11-12 15:38:20 39.65MB 附件源码 文章源码
1
本资源为深度学习交通流量预测的实战项目,其中包含了用LSTM,GRU以及CNN来进行流量预测的相关源码,整个项目的过程集数据预处理、模型训练与测评,性能展示于一体,代码结构良好,易于阅读,且在CSDN有本人相应的博客说明。
红绿灯交通学习 需要做的事情: 安装FLOW框架-https: 安装SUMO- //sumo.dlr.de/docs/Downloads.php或遵循FLOW安装 然后,将custom_traffic_light_env.py放入envs文件夹(/ flow / flow / envs)下的FLOW文件夹中。 通过添加以下内容来修改envs文件夹的init.py: 从flow.envs.custom_traffic_light_env导入CustomTrafficLightEnv, CustomTrafficLightPOEnv,CustomTrafficLightTestEnv,CustomTrafficLightBenchmarkEnv 全\u90e8='CustomTrafficLightEnv','CustomTrafficLightPOEnv','CustomTrafficLig
2021-10-25 17:23:36 436KB Python
1