MSC.ADAMS 不仅是一个优秀的虚拟样机建模和分析软件,同时也可作为开发虚拟 样机分析应用软件的有效工具。 用户可以针对特定的应用需求, 对 MSC.ADAMS进行功能定制 和次开发,扩充其功能或者将其仿真分析功能集成到自己的程序中。本文从编写 MSC.ADAMS用户自定义函数和 MSC.ADAMS/SDK开发两个方面,对 MSC.ADAMS的次开发技术 及其在工程上的应用进行了介绍。
2024-10-14 17:09:43 109KB ADAMS 二次开发
1
【项目资源】:图像处理。包含前端、后端、移动开发、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源等各种技术项目的源码。包括C++、Java、python、web、C#、EDA等项目的源码。 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】:项目具有较高的学习借鉴价值,也可直接拿来修改复刻。对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。鼓励下载和使用,并欢迎大家互相学习,共同进步。
2024-10-09 22:24:33 19.23MB 图像处理
1
微信次分享不显示logo 、突破5个js接口安全域名限制、域名代理转发、js代码判断
2024-10-09 12:53:50 309KB 微信 javascript 二次分享
1
维码数据集是一个重要的资源,主要用于训练和测试计算机视觉模型,特别是针对维码识别任务。这个数据集包含1085张维码图像,旨在帮助开发者和研究人员训练机器学习或深度学习算法来精准地检测和解析维码。维码(Quick Response Code)是一种维条形码,能够存储丰富的信息,如网址、文本、联系信息等,且易于通过手机摄像头快速读取。 在给定的描述中提到了基于yolov5的维码识别项目,YOLO(You Only Look Once)是一种实时目标检测系统,最初设计用于通用物体检测。YOLOv5是该系列的最新版本,它以其高效和高精度著称。将YOLOv5应用到维码识别意味着利用其强大的特征提取能力和实时性能,可以快速准确地定位和识别维码。 要利用这个数据集,首先需要对图像进行预处理,包括调整大小、归一化等步骤,以便适应YOLOv5模型的输入要求。然后,数据集需要被划分为训练集、验证集和测试集,通常比例为训练:验证:测试 = 8:1:1,以确保模型的泛化能力。训练过程涉及对模型权重的迭代优化,以最小化预测框与实际维码位置之间的差距。 YOLOv5模型通常使用PyTorch框架实现,训练过程中可能需要调整超参数,如学习率、批大小、训练轮数等,以达到最佳性能。此外,可能会涉及到数据增强技术,如翻转、旋转、裁剪等,以增加模型的鲁棒性。 在训练完成后,模型可以应用于测试集上的图像,评估其性能。常用的指标有平均精度(mAP)、召回率、精确率等。如果模型表现不佳,可能需要进行模型微调或者尝试其他方法,如迁移学习,利用预训练的模型作为起点,进一步提高维码检测的准确性。 至于压缩包中的"QR"文件,这可能是所有维码图像的集合,可能以.jpg、.png或其他图像格式存在。每个文件名可能代表一个唯一的维码实例,便于在训练和评估过程中追踪和管理。 这个维码数据集提供了一个实践和研究维码识别的理想平台,结合YOLOv5模型,我们可以构建一个高效且实用的维码检测系统。对于想要进入计算机视觉领域,尤其是目标检测和深度学习的初学者来说,这是一个很好的实践项目。同时,这个项目也适用于那些希望改进现有维码识别技术的开发者,以应对日益增长的维码应用场景。
2024-10-05 08:59:43 84.03MB 数据集
1
2024全新交友盲盒+付费进群合一源码,包含全套源码+教程,小白也能轻松搭建【源码+教程】 设备需求:服务器+域名 2024全新交友盲盒+付费进群合一源码,包含全套源码+教程,小白也能轻松搭建【源码+教程】 39同校 三九同校 最高版本,纸条,交友,源码,搭建包上线运营,防封红,独家唯一版本 盲盒交友脱单系统源码,带教程,免授权这套源码已经替你们搭建测试过了 2024全新交友盲盒+付费进群合一源码,包含全套源码+教程,小白也能轻松搭建【源码+教程】 附带进群系统,定位是正常的 申明需要无限回调,没有回调的搭建出来不能用不要说源码不能用 全新系统方便大家使用,已经录制好详细的教程,包括: 1.项目前端+后端讲解 2.宝塔面板安装教程 3.盲盒交友+付费进群合一搭建教程
2024-10-03 11:05:01 88B 课程资源
1
开源数学库,包含了.NET平台上的面向对象数字计算的基础类。类似 NMath ,但 NMath 是收费的。 https://blog.csdn.net/zyyujq/article/details/123215130 Combinatorics 排列组合相关功能 ComplexExtensions 对System.Numerics类中复数相关功能的扩展 Constants 数学中常用的一些常数。 ContourIntegrate 对库的参数进行配置。 Differentiate 导数,对函数求一阶导数和阶导数等。 Distance 各种类型的距离计算。 Euclid 整数数论。 Evaluate 多项式评价函数,类似于Matlab中Polyval。 ExcelFunctions excel 常用的函数,仅作为从excel转移到MathNet的过渡,不推荐正式使用。 FindMinimum 极小值迭代器。 FindRoots 方程求根。 Fit 使用最小乘算法拟合数据。支持直线、多项式、指数等多种函数拟合。 Generate 生成器:斐波那契数列、线性数组、正态分布等。
2024-09-28 01:45:48 1.2MB 数学分析
1
LabVIEW是一种图形化编程语言,尤其在数据采集、测试测量和控制系统设计方面有着广泛的应用。在本场景中,我们讨论的是如何使用LabVIEW 2013及其视觉模块(Vision Development Module, VDM)来实现一次识别16个维码的功能。这个任务涉及到图像处理、模式识别和计算机视觉等技术。 我们要明确的是,LabVIEW VDM提供了丰富的视觉工具,包括图像获取、处理和分析。在本例中,关键的步骤如下: 1. **几何匹配**:这是寻找维码的关键步骤。LabVIEW中的几何匹配算法可以检测图像中的特定形状或模式,如维码。通过设置模板匹配或特征匹配,程序可以查找并定位图像中的所有维码。这一步骤通常包括灰度转换、降噪、边缘检测等预处理,以便更准确地找到维码。 2. **识别维码个数和中心位置**:几何匹配的结果将帮助我们确定维码的位置和数量。一旦找到维码的轮廓,就可以计算每个维码的中心坐标,这对于后续的处理至关重要。 3. **绘制ROI(感兴趣区域)**:基于维码的中心位置,程序会自动生成ROI。ROI是图像处理中常用的概念,它定义了需要进行进一步分析的图像子区域。在本例中,每个ROI将围绕一个维码,限制了识别过程的范围,提高效率。 4. **维码识别**:有了ROI,我们可以对每个区域进行单独的维码解码。LabVIEW VDM内建的维码读取器能识别常见的维码格式,如QR Code、Data Matrix等,并提取出其中的文本信息。 5. **结果显示**:程序会显示识别出的维码文本以及对应的边界框,用户可以通过界面上的反馈直观地看到识别结果。 在这个过程中,可能还需要考虑到一些优化策略,例如错误处理(如维码识别失败)、性能优化(如多线程处理每个ROI)以及用户交互设计等。在实际应用中,可能还需要考虑不同光照条件、维码质量等因素对识别率的影响。 附带的文件“222.bmp”和“1.png”可能是用于测试的维码图像,而“labview识别维码.vi”则是实现上述功能的LabVIEW虚拟仪器(VI)。打开此VI,我们可以查看具体的代码逻辑,学习如何使用LabVIEW的视觉函数来实现多维码识别。 总结来说,LabVIEW结合VDM可以高效地完成复杂的图像处理任务,如一次性识别多个维码。通过理解并实践这些步骤,开发者可以扩展这个系统,适应更广泛的应用场景,例如在自动化生产线上的质量检测或物流追踪系统中。
2024-09-27 10:38:18 3.03MB labview视觉
1
在【空气质量预报次建模1】这个话题中,我们关注的是如何通过数学建模技术改进空气质量预报的准确性。这个任务源于2021年中国研究生数学建模竞赛B题,其核心是基于WRF-CMAQ模型进行次建模,以提升对大气污染,特别是臭氧污染的预测效果。 WRF-CMAQ模型是当前常用的空气质量预报工具,由两个主要部分组成:WRF(Weather Research and Forecasting)和CMAQ(Community Multiscale Air Quality)。WRF是一个中尺度数值天气预报系统,它提供所需的气象场数据,而CMAQ则是一个大气化学与传输模拟系统,利用WRF的气象信息和污染排放清单来模拟污染物的变化,进而预测未来的空气质量状况。然而,由于模型本身的不确定性、气象条件的复杂性以及对污染物生成机理的不完全理解,WRF-CMAQ模型的预测结果可能存在误差。 次建模的概念就是在WRF-CMAQ模型的基础上,结合更多数据源进行再次建模,以提高预报的准确性。具体来说,考虑到实际气象条件对空气质量(如臭氧生成)的影响,以及污染物浓度实测数据对预报的参考价值,可以通过引入空气质量监测站的气象和污染物数据来优化模型。这种次模型可以利用一次预报数据(WRF-CMAQ模型的输出)和实测数据,通过数学算法进行调整和校正,以提高预测的精确度。 在进行次建模时,需要注意几个关键点: 1. 数据获取受限,部分气象指标的实测数据可能无法获得。 2. 预报通常在每天早晨7点进行,可利用的数据范围有限,仅包括当天7点前的实测数据和之前日期的一次预报数据。 3. 因为一次预报对邻近日期的准确性较高,所以理论上次预报对邻近日期的准确性也会较高。 在六种常规大气污染物中,臭氧(O3)的预测尤为困难,因为它是一种次污染物,非直接排放,而是由大气中的化学和光化学反应生成。由于其生成机制复杂,现有模型难以准确预测。因此,建立有效的次模型,特别是针对臭氧的预测模型,对于环保部门的预警和防治工作至关重要。 为了实现这一目标,参赛者需要分析提供的历史数据,包括污染物浓度的一次预报数据、气象一次预报数据、气象实测数据和污染物浓度实测数据。通过数学方法(如统计学、机器学习等)找出这些数据之间的关联模式,构建次模型,以期改善对未来三天空气质量的预测。同时,针对臭氧生成机理的深入研究也是提高预测准确性的关键。
2024-09-26 22:17:13 594KB
1
资源名称:维四边形网格有限体积法Matlab程序 核心功能:该程序实现了基于维四边形网格的有限体积法(Finite Volume Method, FVM),适用于任意仿射四边形网格的计算。有限体积法是一种强大的数值方法,广泛用于求解偏微分方程,特别是流体力学、热传导等领域的复杂物理问题。该程序通过离散化连续求解区域为一系列互不重叠的四边形控制体,并在每个控制体上应用守恒定律进行数值求解。 学习内容: 有限体积法基础:用户可以通过该程序深入理解有限体积法的基本原理,包括控制体的划分、物理量的积分、离散化方程的构建等。 网格生成与操作:程序支持任意仿射四边形网格,用户可以学习如何生成和操作这类网格,包括网格的划分、节点的编号、单元的连接等。 离散化技术:通过程序的实现,用户可以学习如何将连续的物理方程离散化为代数方程,以及不同离散化格式(如中心差分、上游差分等)的选择和应用。 数值解与误差分析:程序计算了L2和H1误差,这是评估数值解精度的重要指标。用户可以学习如何进行误差分析,了解不同网格密度和离散化方法对解的精度的影响。 结果可视化:程序可以画出数值解和精确解的对比图象.
2024-09-26 15:52:40 1.57MB matlab
1
核磁定量29Si谱及1H{29Si} 维异核多键相关谱在乙烯基笼型倍半硅氧烷羟基衍生物结构研究中的应用 ,徐丞龙,李晓虹,多面体笼型倍半硅氧烷POSS是近期受到广泛关注的一类有机/无机杂化材料。其化学结构可用红外光谱,热分析,质谱,X射线衍射以及核磁
2024-09-24 09:51:13 338KB 首发论文
1