文件为.cpp格式,可以利用Dev-c++打开浏览源码进行阅读。其中对于读写文件的操作需要根据你所要选择的路径进行修改,否则默认在源码所在文件夹下生成文件。编写源码的过程是在vs2019上进行的,因而防止部分不兼容报错,最好使用vs2019运行代码。
2024-06-23 19:53:06 11KB 数据结构 霍夫曼树 程序设计
1
选课系统 随着在校大学生人数的不断增加,教务系统的数据量也不断的上涨。以往的选课方法是随堂报名。这种方法虽然直接,但是造成选课的盲目性和教务处处理数据的繁重性。为了减轻教务处工作,以及每个学生更好的选择自己所喜欢的科目。针对学生选课这一环节,本系统从学生网上自主选课以及教师的课程发布两个大方面进行了设计,基本实现了学生的在线信息查询、选课功能以及教师对课程信息发布的管理等功能。 本文通过分析浏览器/服务器结构的特点并结合选课的实际情况,提出了基于浏览器/服务器结构网上选课系统的基本设计思想,简要介绍了系统各功能模块及数据库的设计,着重讨论了用 ASP.NET技术和SQL Server 开发网上选课系统时的数据库访问技术和动态网页制作技术,并给出了部分实现代码。通过该系统,使学生可以方便地在校园网上进行网上选课。该B/S结构的系统在Windows XP系统和VS.NET平台下开发完成,使用C#作为ASP.NET的开发语言,SQL Server 2000作为数据库。系统有较高的安全性和较好的性能。其中连接数据库的字符串可以随时在web.config里修改,并经过编码加密,增
2024-06-23 15:54:56 1.79MB asp.net 毕业设计
1
本资源99.999%可以用。因为我知道下载下来不能用有多难受! vue-todolist包括三个版本,一个是脚手架的,一个是普通vue的,一个是使用vue组件编写的。不能用的,一定是环境没有搭配好,我的博客里会有相关的介绍和本资源的简介图,可以看一下。(脚手架删除少传了一个参数 const {todo,index,deleteTodo}=this,如果下载了,注意加一下,图在我博客里)
2024-06-23 11:13:26 35.6MB vue html5 props传值
1
内容包括: 传统RSA实现: 1、ZIntMath:大整数的运算库,包括计算乘模运算,幂模运算(蒙哥马利算法),最大公约数算法及扩展最大公约数算法(扩展欧几里得算法)等。 2、ZPrime:质数库,包括 Miller_Rabin素数判断法,大整数快速因式分解算法(pollard_rho算法),生成指定位数的大质数或大整数算法等。 3、ZRSA: RSA算法库,使用上面两个库,实现RSA算法。实现了生成指定数位的密钥对,加密,解密,签名和验证,这5个核心功能。 4、RSAtest.py一个使用RSA算法库的例子。例子从生成密钥对开始,对数据进行加解密,签名和验证签名,最后用修改后的消息再次验证签名。 改进RSA算法实现: 5、IRSA:改进的RSA算法库,实现了基于多素数的指定数位的密钥对,RSA加密,RSA解密,基于中国剩余定理的RSA解密,签名,验签。 6、IRSAtest.py 使用改进RSA算法库的例子。
2024-06-23 10:13:18 30KB rsa
1
在JavaScript中,将图片的绝对路径转换为base64字符串或blob对象,是常见的图片上传前的预处理步骤。这通常用于将用户选择的本地图片数据化,以便于通过Ajax方式上传到服务器,同时可以避免跨域问题。下面将详细阐述这个过程。 首先,将图片的绝对路径转换为base64字符串,主要依赖于HTML5的``元素的`toDataURL()`方法。这个方法可以将画布的内容转换为一个data URL,即base64编码的字符串,可以直接作为``标签的`src`属性使用。下面是一个简单的示例: ```javascript function getBase64Image(imgPath, width, height) { var img = new Image(); img.src = imgPath; var canvas = document.createElement('canvas'); var ctx = canvas.getContext('2d'); // 确保图片加载完成 img.onload = function() { canvas.width = width || img.width; canvas.height = height || img.height; ctx.drawImage(img, 0, 0, canvas.width, canvas.height); var dataURL = canvas.toDataURL(); return dataURL; }; return img; } // 使用示例 getBase64('img/1.jpg').then(function(base64String) { console.log(base64String); }, function(err) { console.log(err); }); ``` 在这个例子中,`getBase64Image`函数接收图片路径、宽度和高度作为参数。它创建一个新的`Image`对象并设置其`src`属性为图片路径。当图片加载完成后,利用`canvas`绘制图片并调用`toDataURL`获取base64字符串。 如果图片位于不同的源(例如,跨域),浏览器出于安全考虑,会阻止在`canvas`上操作这些图片。为了解决这个问题,你可以将图片放在本地服务器下,以避免跨域问题。如示例中的`var imgSrc = "img/1.jpg";`,这样图片就在同一个源下,不会触发跨域错误。 除了base64字符串,还可以将图片转换为blob对象。blob对象是二进制大型对象,适用于处理大量数据。转换过程如下: ```javascript function imageToBlob(base64String) { return fetch(base64String.replace('data:image/jpeg;base64,', '')) .then(response => response.blob()); } // 使用示例 getBase64('img/1.jpg').then(base64String => { imageToBlob(base64String).then(blob => { // 上传blob对象 uploadImage(blob); }); }, function(err) { console.log(err); }); ``` 在这个例子中,`imageToBlob`函数首先将base64字符串转换为fetch请求,然后将响应体转换为blob对象。最后,可以将这个blob对象通过Ajax或其他异步方法上传到服务器。 总结起来,JavaScript中处理图片上传的过程通常包括以下步骤: 1. 获取图片的绝对路径。 2. 将图片路径转换为`Image`对象。 3. 使用`canvas`绘制图片并获取base64字符串或blob对象。 4. 上传base64字符串或blob对象到服务器。 确保处理过程中遵循同源策略,必要时将图片放在本地服务器,以避免跨域问题。同时,对于大文件,使用blob对象上传可能更高效,因为它允许分块传输。
2024-06-22 20:55:03 51KB 图片上传
1
该工具类可以实现以下几个功能 1、得到有效文件的长度(即大小),以字节表示 getFileSize(String filePath),需要传入文件路径 2、可以上传图片与非图片文件。有二个重构方法 一、无限制文件大小上传upLoad(String uploadPath,String filePath,String fileName),uploadPath代表上传目录,filePath代表文件路径,fileName 代表上传到服务器上的文件名 二、限制文件的大小,如果是图片则对图片进行压缩,如果是非图片,大于设定则不能上传 upLoad(
2024-06-22 18:27:11 9KB java
1
原文链接:https://qihongtao.blog.csdn.net/article/details/134978662?spm=1001.2014.3001.5502 sm2+openssl.zip 使用C++实现的openssl调用sm2实现文件签名的功能。 C++源代代码可以直接使用。也上传了openssl1.1.1的头文件、lib文件和dll文件。 因为国产化原因,项目中需要使用国标sm2签名算法对文件进行签名和验签。OpenSSL 1.1.1版本提供了对国密SM2算法的支持,在之前的版本openssl不支持。 关注公众号 QTShared,后台私信留言免费获取。
2024-06-22 14:42:19 7.64MB openssl 国密算法
本博客将介绍一种新的时间序列预测模型——FNet它通过使用傅里叶变换代替自注意力机制,旨在解决传统Transformer模型中的效率问题。FNet模型通过简单的线性变换,包括非参数化的傅里叶变换,来“混合”输入令牌,从而实现了快速且高效的处理方式。这种创新的方法在保持了相对较高的准确性的同时,显著提高了训练速度,特别是在处理长序列数据时更显优势。FNet的工作原理,并通过一个实战案例展示如何实现基于FNet的可视化结果和滚动长期预测。预测类型->多元预测、单元预测、长期预测。适用对象->受硬件所限制的时候,FNet是一种基于Transformer编码器架构的模型,通过替换自注意力子层为简单的线性变换,特别是傅里叶变换,来加速处理过程。FNet架构中的每一层由一个傅里叶混合子层和一个前馈子层组成(下图中的白色框)。傅里叶子层应用2D离散傅里叶变换(DFT)到其输入,一维DFT沿序列维度和隐藏维度。总结:FNet相对于传统的Transformer的改进其实就一点就是将注意力机制替换为傅里叶变换,所以其精度并没有提升(我觉得反而有下降,但是论文内相等,但是从我的实验角度结果分析精度是有下降的
1
基于MapReduce实现决策树算法的知识点 基于MapReduce实现决策树算法是一种使用MapReduce框架来实现决策树算法的方法。在这个方法中,主要使用Mapper和Reducer来实现决策树算法的计算。下面是基于MapReduce实现决策树算法的知识点: 1. 基于C45决策树算法的Mapper实现:在Mapper中,主要实现了对输入数据的处理和预处理工作,包括对输入数据的tokenize、attribute extraction和data filtering等。同时,Mapper还需要实现对决策树算法的初始化工作,例如对树的节点进行初始化和对属性的初始化等。 2. 基于MapReduce的决策树算法实现:在Reducer中,主要实现了决策树算法的计算工作,包括对树的构建、决策树的分裂和叶节点的计算等。Reducer需要对Mapper输出的结果进行处理和计算,以生成最终的决策树模型。 3. MapReduce框架在决策树算法中的应用:MapReduce框架可以对大规模数据进行并行处理,使得决策树算法的计算速度和效率大大提高。在基于MapReduce实现决策树算法中,MapReduce框架可以对输入数据进行分区和处理,使得决策树算法的计算可以并行进行。 4. 决策树算法在MapReduce中的优化:在基于MapReduce实现决策树算法中,需要对决策树算法进行优化,以提高计算速度和效率。例如,可以对决策树算法的计算过程进行并行化,对Mapper和Reducer的计算过程进行优化等。 5. 基于MapReduce的决策树算法的应用:基于MapReduce实现决策树算法可以应用于数据挖掘、机器学习和推荐系统等领域,例如可以用于用户行为分析、推荐系统和风险评估等。 6. 决策树算法在MapReduce中的实现细节:在基于MapReduce实现决策树算法中,需要对决策树算法的实现细节进行详细的设计和实现,例如对树的节点进行实现、对决策树的分裂和叶节点的计算等。 7. MapReduce框架在决策树算法中的限制:基于MapReduce实现决策树算法也存在一些限制,例如对输入数据的规模和复杂度的限制,对决策树算法的计算速度和效率的限制等。 8. 基于MapReduce实现决策树算法的优点:基于MapReduce实现决策树算法的优点包括高效的计算速度、可扩展性强、灵活性强等,可以满足大规模数据的处理和计算需求。 9. 基于MapReduce实现决策树算法的缺点:基于MapReduce实现决策树算法的缺点包括对输入数据的限制、对决策树算法的计算速度和效率的限制等。 10. 基于MapReduce实现决策树算法的应用前景:基于MapReduce实现决策树算法的应用前景包括数据挖掘、机器学习、推荐系统等领域,可以满足大规模数据的处理和计算需求。
2024-06-22 02:37:14 57KB MapReduce 决策树算法
1
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。
1