大数据蕴含大发展,结合不断提升的高性能计算机更是给机器视觉技术带来日新月异的发展。深度卷积神经网络也正是借着这股力量才大放异彩,其主要应用包括语音识别、图像处理、自然语言处理等。本文就当前大环境下研究了卷积神经网络模型在静态环境下入脸识别领域的应用。相对传统人脸识别方法而言,卷积神经网络模型不需要人工进行大量而又复杂的特征提取算法设计,仅需要设计一个可行的网络模型,再将大量的人脸训练数据集加载到网络模型中,然后进行自动训练,这样就可以得到很好的识别率。把训练好的模型保存下来,那么这个模型就是一个端到端的人脸特征提取器。该方法虽然操作简单,但是需要根据训练数据集设计合理的网络结构,而且最难的关键点是超参数的调整和优化算法的设计。因此本文结合残差网络和融合网络构建了两个与计算资源和数据资源相匹配的网络模型,并通过反复调整超参数和调试优化器使其在训练集上能够收敛,最终还取得较好的识别率。
1