Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测 Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测(Matlab完整程序和数据) 1.最大互信息系数MIC(数据特征选择算法)的分类预测,MIC特征选择分类预测,多输入单输出模型。 2.多特征输入模型,直接替换数据就可以用。 3.语言为matlab。分类效果图,混淆矩阵图。 4.分类效果图,混淆矩阵图。 5.MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测。 运行环境matlab2018及以上。 经过特征选择后,保留9个特征的序号为: 1 3 5 7 8 9 10 11 12
2024-04-29 15:57:15 1KB matlab 神经网络
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-04-29 13:48:31 2.33MB matlab
1
【优化预测】蝙蝠算法优化BP神经网络预测【含Matlab源码 1379期】.zip
2024-04-28 19:09:04 66KB
1
Lambda 算法是 Hea 的新版本
2024-04-28 17:04:07 294KB matlab
1
基于模型预测控制(MPC)无人驾驶汽车轨迹跟踪控制算法,基于MATLAB/simulink与carsim联合仿真,包含cpar,par,slx文件,支持MATLAB2018和carsim2019版本,先导入capr文件,然后发送到simulink,可支持修改代码,运用S-Function函数编写。 四轮转向汽车轨迹跟踪模型。 基于模型预测控制(MPC)无人驾驶汽车轨迹跟踪控制算法,基于MATLAB/simulink与carsim联合仿真,包含cpar,par,slx文件,支持MATLAB2018和carsim2019版本,先导入capr文件,然后发送到simulink,可支持修改代码,运用S-Function函数编写。 四轮转向汽车轨迹跟踪模型。
2024-04-28 14:08:31 629KB matlab carsim simulink 无人驾驶车辆
1
1.项目利用Python爬虫技术,通过网络爬取验证码图片,并通过一系列的处理步骤,包括去噪和分割,以实现对验证码的识别和准确性验证。 2.项目运行环境:Python环境:需要Python 2.7配置,在Windows环境下下载Anaconda完成Python所需的配置,下载地址为https://www.anaconda.com/,也可以下载虚拟机在Linux环境下运行代码。 3.项目包括4个模块:数据爬取、去噪与分割、模型训练及保存、准确率验证。用request库爬虫抓取验证码1200张,并做好标注。图片爬取成功后进行去噪与分割。处理数据后拆分训练集和测试集,训练并保存。模型保存后,可以被重新使用,也可以移植到其他环境中使用。 4.准确率评估:测试结果精度达到99%以上。 5.项目博客:https://blog.csdn.net/qq_31136513/article/details/131571160
2024-04-28 10:40:57 23.11MB python 爬虫 机器学习 验证码识别
1
YOLOv5算法本身非常优秀,随着其版本的迭代更新,网络各个模块对物体检测中的常见问题都做了一定的优化改进,本身就具有较好的工程实用性。 Input部分完成数据增强、自适应图片缩放、锚框计算等基本处理任务;Backbone部分作为主干网络,主要使用CSP结构提取出输入样本中的主要信息,以供后续阶段使用;Neck部分使用FPN及PAN结构,利用Backbone部分提取到的信息,加强特征融合;Prediction部分做出预测,并计算CIOU_Loss等损失值。 随着计算机视觉技术的不断发展,目标检测领域里的各种算法技术层出不穷,针对不同事物不同目标,我们需进行多方比较,进而择优选择。其中,YOLOv5算法,得益于速度快精度高而闻名,是一种经典且稳定的算法。 此份结构图,有助于大家了解yolov5模型的整体框架与架构,帮助大家理清原理熟悉源码设计。
2024-04-28 10:08:30 238KB 计算机视觉 yolov5 算法设计 总体架构
1
在雷达系统当中,跟踪的应用种类很多,包括但不限于`目标定位、自主导航、天气预测、空中交通管制和军事应用`等等,那么**如何获得更加准确的关于目标数据**就成为一个至关重要的问题。,`跟踪滤波器`为一种较好的方式,跟踪滤波器的**主要目的**就是`在充满不确定性的情况下,获得更为精准的目标的位置信息、速度信息、加速度信息等`,其中的alpha-beta滤波器为最基础的一种用于简单目标跟踪滤波的滤波器类型,了解此种滤波器对于后续的卡尔曼滤波器具有一定的帮助,本程序对其进行了MATLAB仿真,程序正确,结果较好,大家可以自行下载查看学习
1
使用Halcon实现的两点之间线性插值算法,支持多点输入
2024-04-27 16:15:14 4KB 图像处理 Halcon
1
matlab集成c代码 ECO_C_Edition 一、目标 冯如杯目标跟踪,将ECO算法转换为C语言版本 二、Guideline 1,完整读一遍代码,勾勒出算法框架 2,分工:feature extraction部分和implemention部分。后面implemention部分比较复杂,可以多找两个人来读和写。 3,找出所有的依赖于第三方的库和代码,比如各种滤波用到的fft什么的之类的,找到用c的话用哪些库来代替(比如c下面有很高效的fftw算法库可以用) 4,按照分工,从上至下一个模块一个模块用c来重新,并进行模块测试,结果跟matlab来对比,确保模块功能正确 5,把各个模块进行集成。 三、测试 使用MATLAB的unit test功能 四、Github操作 使用Github Desktop,修改后提交使用PUSH,获得更新使用PULL 五、运行 1.Download matconvnet ZIP file from and unpack it in the external_libs/matconvnet/ folder of the repository. 2.Downlo
2024-04-27 15:38:14 7.98MB 系统开源
1