matlab代码,用于高光谱、多光谱数据重采样,内容清晰
2019-12-21 20:53:33 32KB 高光谱 重采样
1
高光谱端元提取算法PPI,matlab编写。内有参数注释。可供高光谱图像解混学习提供帮助。高光谱端元提取算法PPI,matlab编写。内有参数注释。可供高光谱图像解混学习提供帮助
2019-12-21 20:48:49 963B matlab
1
进行高光谱图像处理时的降维程序,修改文件中的读入参数名称即可使用。
2019-12-21 20:45:29 2KB PCA,MATLAB
1
使用SVM代码对AVIRIS_Indiana_16class高光谱数据集进行分类
2019-12-21 20:45:06 5.8MB 机器学习 SVM 高光谱
1
Indian_pinesMATLAB格式的高光谱数据集和地面验证数据和数据说明,Indian_pinesMATLAB格式的高光谱数据集和地面验证数据和数据说明Indian_pinesMATLAB格式的高光谱数据集和地面验证数据和数据说明
2019-12-21 20:39:16 11.7MB Indian_pines 高光谱
1
matlab cnn高光谱图像分类
2019-12-21 20:37:07 35.41MB cnn
1
The NASA AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) instrument acquired data over the Kennedy Space Center (KSC), Florida, on March 23, 1996. AVIRIS acquires data in 224 bands of 10 nm width with center wavelengths from 400 - 2500 nm. The KSC data, acquired from an altitude of approximately 20 km, have a spatial resolution of 18 m. After removing water absorption and low SNR bands, 176 bands were used for the analysis. Training data were selected using land cover maps derived from color infrared photography provided by the Kennedy Space Center and Landsat Thematic Mapper (TM) imagery. The vegetation classification scheme was developed by KSC personnel in an effort to define functional types that are discernable at the spatial resolution of Landsat and these AVIRIS data. Discrimination of land cover for this environment is difficult due to the similarity of spectral signatures for certain vegetation types. For classification purposes, 13 classes representing the various land cover types that occur in this environment were defined for the site.
2019-12-21 20:35:08 73.23MB 高光谱图像 数据集 高光谱图像数
1
一组标准的高光谱数据,以及自己编写 multibandread()函数读取的matlab程序,和大家分享,应该对大家有帮助
2019-12-21 20:32:22 11.11MB 高光谱图像
1
光谱数据分析方法,光谱曲线分形特征研究,高光谱
2019-12-21 20:32:09 373KB 周子勇
1
目前全球最通用、功能最强、最完整的机载航空高光谱处理中英文详细操作流程。
2019-12-21 20:26:00 2.45MB HYSPEX
1