管理----糖尿资料整合:包括市场调研,解决方案,专家建议,临床指南等。 详细内容参见:https://season.blog.csdn.net/article/details/92250559
2021-03-27 20:08:00 44.55MB 慢病管理 糖尿病
铁路隧道隧底害检测模拟试验研究.pdf
2021-03-18 18:06:25 12.57MB 地质雷达
1
隧道基底害现状及成因分析.pdf
2021-03-18 18:06:24 164KB 隧道基底病害
1
管理系统WebService工程
2021-03-15 15:06:23 3.61MB c# 管理系统 工程
中国罕见行业观察2021.pdf
2021-03-13 13:05:41 24.31MB 罕见病
优化VBM算法和DARTEL算法分析阿尔茨海默MRI
2021-03-10 18:06:49 284KB 研究论文
1
与传统的基于单模式的方法相比,它在诊断和预后阿尔茨海默氏(AD)以及其前驱阶段(即轻度认知障碍(MCI))方面显示出巨大的优势。 然而,据我们所知,大多数现有方法都集中于挖掘同一主题的多种模式之间的关系,而忽略了不同主题之间的潜在有用关系。 因此,在本文中,我们将通过全面研究模态与主题之间的关系,为AD / MCI的多模态分类提出一种新颖的学习方法。 具体来说,我们提出的方法包括两个后续组件,即标签对齐的多任务特征选择和多模式分类。 在第一步中,将从多种模态中学习的特征选择视为不同的学习任务,并使用组稀疏性正则化器共同选择相关特征的子集。 此外,为了利用标记对象之间的区别信息,在标准多任务特征选择的目标函数中添加了一个新的标签对齐正则化术语,其中标签对齐意味着所有具有相同类别标签的多模态对象应在距离上更近。新的功能减少的空间。 第二步,采用多核支持向量机(SVM)融合多模态数据中的选定特征,以进行最终分类。 为了验证我们的方法中,我们执行在阿尔茨海默的神经影像学倡议(ADNI)数据库使用基线MRI和FDG-PET成像数据的实验。 实验结果证明我们提出的方法与几种用于AD / MCI
2021-03-09 19:05:26 1.51MB Alzheimer’sdisease; Mild cognitive impairment;
1
玉米生长状态数据集,包括玉米的4种生长状态。玉米健康、大斑、小斑和玉米锈,文件夹中分别用0、1、2、3表示。各类图片分别有433、354、187、432张,共1406张。
2021-03-04 18:29:41 18.11MB 数据集 植物生长状态 植物病害 玉米
1
高血压患者的饮食护理,高血压患者的饮食护理课件,高血压患者的饮食护理PPT
2021-03-03 21:04:59 1.25MB 高血压病患者的饮食护理
使用小脑灰色物质将帕金森氏患者与正常对照患者区分开
2021-02-26 15:05:01 896KB 研究论文
1