CSDN海神之光上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:VoiceRecognition.m; Fig:GUI操作界面; 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到 Matlab的当前文件夹中; 步骤二:双击打开VoiceRecognition.m文件;(若有其他m文件,无需运行) 步骤三:点击运行,等程序运行完得到结果; 4、语音处理系列仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 语音处理系列程序定制或科研合作方向:语音隐藏、语音压缩、语音识别、语音去噪、语音评价、语音加密、语音合成、语音分析、语音分离、语音处理、语音编码、音乐检索、特征提取、声源定位、情感识别、语音采集播放变速等; CSDN海神之光上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函
2024-08-31 17:57:04 316KB matlab
1
在电力系统领域,配电网优化调度是至关重要的一个环节,尤其是在现代能源系统中,随着可再生能源的大量接入,对电网的灵活性需求日益增加。本文将深入探讨“基于IEEE33的配电网优化调度”这一主题,它是一个典型的学术研究案例,旨在通过模拟实际的电力网络来解决电力分配和管理中的问题。 IEEE33节点系统是电力系统分析中广泛使用的标准测试系统之一,它包含了33个节点,包括负荷节点和电源节点。这个系统常被用来检验各种电力系统的控制策略、保护方案和优化方法。在基于IEEE33的配电网优化调度中,研究者通常会考虑如何在满足安全运行和服务质量的前提下,最大限度地利用现有资源,降低运营成本,提高整体效率。 优化调度的目标通常包括最小化发电成本、最大化电能质量、平衡供需、减少线路损耗等。在这个过程中,需要考虑到多种灵活性资源,如储能系统(如电池储能)、分布式能源(如光伏、风能)、需求侧管理(如负荷调节)以及虚拟电厂(集合多个小型能源系统以形成一个协调的整体)。这些灵活性资源可以为电网提供额外的调峰填谷能力,改善频率稳定性,提升系统的可靠性。 在实现优化调度时,一般采用数学模型和算法。其中,线性规划、二次规划、混合整数线性规划等是最常用的工具,它们能够处理复杂的约束条件,如功率平衡、设备容量限制、电压约束等。此外,智能优化算法,如遗传算法、粒子群优化、模糊逻辑和神经网络等也被广泛应用,这些算法具有较强的全局搜索能力和适应性。 调度过程通常包括以下几个步骤:数据采集(获取实时或预测的电力需求、天气情况、设备状态等)、模型构建(建立电网的数学模型并设定目标函数和约束条件)、优化计算(运行优化算法求解最优调度方案)、决策执行(将调度结果发送给相应设备执行)以及反馈调整(根据实际情况调整调度策略)。为了应对不确定性,动态调度和自适应调度策略也是研究的重点。 考虑所有灵活性资源的优化调度是一个复杂的多目标优化问题,需要综合考虑经济效益、环境影响和社会效益。此外,随着物联网和大数据技术的发展,实时数据的获取和处理能力增强,也为优化调度提供了更为精准的基础。因此,基于IEEE33的配电网优化调度不仅是理论研究的热点,也是电力行业实践的重要方向,对于构建智能、绿色、高效的未来电网具有深远的影响。
2024-08-31 15:02:05 11KB
1
项目背景与目的 现代家用电器,特别是冰箱,已经不仅仅是简单的食品存储设备,它们逐渐集成了更多的智能化功能。随着物联网(IoT)技术的发展和智能家居的普及,如何提升冰箱的制冷和加热效率、稳定性以及用户体验,成为家电行业的重要课题。基于PID(Proportional-Integral-Derivative)算法的冰箱制冷加热项目旨在通过精确的温度控制,优化冰箱的性能,提高能效,提供更优质的用户体验。 本项目的主要目的是: 温度精确控制:通过引入PID算法,实现对冰箱内部温度的精确控制,确保食品保鲜效果和节能。 智能调节:根据用户需求和外部环境的变化,智能调整制冷和加热模式,提高冰箱的适应性和效率。 数据监控与分析:实时监控冰箱的运行状态,通过数据分析优化控制策略,提升系统的稳定性和可靠性。
2024-08-31 09:09:49 2.95MB
1
【标题】中的“matlabB样条轨迹规划,多目标优化,7次非均匀B样条轨迹规划”涉及的是机器人路径规划领域中的一个重要技术。在机器人运动控制中,轨迹规划是确保机器人按照预设的方式从起点到终点移动的关键步骤。B样条(B-Spline)是一种在数学和工程中广泛使用的曲线拟合方法,它允许我们生成平滑且可调整的曲线。在这里,提到的是7次非均匀B样条,意味着曲线由7次多项式控制,并且节点间距可以不均匀,这样可以更好地适应不同的路径需求。 “基于NSGAII遗传算法,实现时间 能量 冲击最优”指出该规划过程采用了多目标优化。NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种高效的多目标优化算法,它利用种群进化策略来同时优化多个相互冲突的目标函数。在这个案例中,目标是找到一条轨迹,使得它在时间消耗、能量消耗和冲击(通常与舒适度或机械损伤相关)方面达到最优平衡。 【描述】中提到,“换上自己的关节值和时间就能用”,意味着这个MATLAB代码提供了一个通用框架,用户只需输入自己机器人的关节角度序列和期望的规划时间,就可以自动生成符合优化条件的轨迹。代码中的“中文注释”对于初学者来说非常友好,有助于理解每个步骤的功能和意义。 结合【标签】“软件/插件”,我们可以推断这是一个可以应用于MATLAB环境的软件或工具,可能是一个MATLAB函数或者脚本,用户可以下载并直接在MATLAB环境中运行,进行机器人轨迹规划的仿真和优化。 【压缩包子文件的文件名称列表】包括一个HTML文件,可能包含了代码的详细解释或者使用说明;四张图片(1.jpg, 2.jpg, 3.jpg, 4.jpg, 5.jpg)可能展示了轨迹规划的示例或者算法流程图;以及一个名为“样条轨迹规划多目标优化.txt”的文本文件,很可能包含了源代码或规划结果的数据。 这个压缩包提供的资源是一个用MATLAB实现的7次非均匀B样条轨迹规划工具,采用NSGA-II遗传算法对时间、能量和冲击进行多目标优化。用户可以根据自己的关节数据和时间要求,利用这个工具生成最佳的机器人运动轨迹,而且代码有中文注释,便于理解和应用。对于机器人控制和多目标优化领域的学习者和研究者来说,这是一个非常实用的资源。
2024-08-30 15:18:15 426KB
1
RFID网络是物联网中物体身份识别的重要方案,RFID系统的安全性直接影响物联网的安全性。已有的RFID隐私保护算法均需要线性地搜索后端的数据库从而识别某个标签,因此后端数据库的计算复杂度与延迟较高。对此基于物理不可克隆函数(PUF)提出一种无需数据库搜索操作的低计算复杂度隐私保护算法。首先,采用PUF安全地保存标签的秘密信息以抵御妥协攻击;然后,数据库端仅需要3个哈希运算与两个异或运算,计算复杂度为O(1)。最终,基于Vaudenay的RFID隐私安全模型分析本算法的性能,结果显示其具有最高的隐私等级,同时计算复杂度最低。
2024-08-30 10:33:11 256KB
1
标题中的“air bearing Matlab 空气静压止推轴承”指的是一个利用Matlab编程实现的计算空气静压止推轴承压力的项目。空气静压止推轴承是一种广泛应用在精密机械和高速旋转设备中的轴承类型,它依靠高压气体在轴承与轴之间形成一层极薄的气膜来支撑负载,具有高精度、低摩擦、无磨损的特点。Matlab是一款强大的数学计算软件,适合进行复杂的数值模拟和数据分析。 这个项目可能包括以下知识点: 1. **空气静压轴承理论**:项目可能涉及空气静压轴承的基本工作原理,如气体动压效应、气体薄膜厚度计算、压力分布分析等。理论基础包括牛顿流体假设、连续性方程、动量方程和能量方程。 2. **Matlab编程**:利用Matlab的编程环境,编写计算空气静压轴承性能的代码。可能用到的Matlab功能有数值计算库(如`ode45`用于求解微分方程)、矩阵运算、函数定义、数据可视化等。 3. **压力分布模型**:在轴承设计中,建立压力分布模型是关键步骤。项目可能涉及二维或三维的数学建模,通过迭代算法求解压力分布。 4. **边界条件设定**:考虑到实际应用,如轴承的几何尺寸、气体供应压力、旋转速度等因素,需要设定相应的边界条件以精确计算轴承性能。 5. **结果分析**:项目可能包含对计算结果的分析,比如压力曲线图、承载能力分析、稳定性评估等,帮助理解轴承的工作状态。 6. **毕业设计/课程设计要求**:作为一个毕业设计或课程设计项目,它可能要求包含完整的报告,包括问题背景、设计目标、理论分析、编程实现、实验结果和结论等内容。 7. **README.md文件**:通常在开源项目或软件包中,README文件会提供项目介绍、使用指南、依赖项、作者信息等内容,下载后的用户应首先阅读此文件以了解如何运行和使用项目。 在“projectok_x”这个压缩包文件中,可能包含了项目的源代码、数据文件、计算结果和可能的报告文档。用户可以解压后查看这些文件以获取更多详细信息。对于学习者来说,这个项目不仅提供了理论知识,还提供了实践经验,有助于深入理解和掌握空气静压轴承的设计与分析。
2024-08-29 16:01:15 6.25MB matlab 毕业设计
1
《基于ANDROID的光谱采集软件——Spectrometer-Demo详解》 在当今科技日新月异的时代,光谱分析技术已经广泛应用于多个领域,包括环境监测、医疗诊断、食品安全检测等。而移动设备的普及,使得将光谱分析功能集成到手机上成为可能。本文将详细介绍一款名为"Spectrometer-Demo"的基于ANDROID平台的光谱采集软件,它专为微型光谱仪提供支持,尤其是Ocean Optics的EMBED2000+微型光谱仪。 一、软件背景与目标 "Spectrometer-Demo"是一款为毕业设计而研发的光谱分析应用,其主要目标是为用户提供一个能够在移动设备上实时采集和分析光谱数据的工具。通过集成微型光谱仪,用户可以利用这款软件进行现场、便捷的光谱测量,极大地扩展了光谱技术的应用场景。 二、核心技术——Java语言 作为标签明确指出,该软件是用Java语言编写的。Java作为一种跨平台的编程语言,具有优秀的可移植性,非常适合用于开发Android应用程序。它的面向对象特性使得代码结构清晰,易于维护,同时丰富的类库也方便开发者快速实现功能。 三、核心功能 1. 光谱采集:软件能够连接并控制微型光谱仪,实时采集光谱数据。用户可以通过手机屏幕直观地看到光谱曲线,了解被测物体的光谱特征。 2. 数据处理:软件内置数据处理算法,可以对采集的光谱数据进行基本的处理,如平均、滤波等,以提高测量的准确性和稳定性。 3. 显示与存储:采集的光谱数据不仅可以实时显示,还可以保存为文件,便于后期分析或共享。 4. 定制化接口:针对特定的微型光谱仪(如EMBED2000+),软件提供了专门的驱动和支持,确保与硬件的无缝对接。 四、实际应用 "Spectrometer-Demo"的出现,使得用户无需大型设备就能进行光谱测量,这对于科研、教育、工业现场检测等场合具有很高的实用价值。例如,化学实验中可以用来检测物质的成分;环保监测中可用于空气或水质的污染分析;医学研究中则可以辅助疾病的早期诊断。 五、未来展望 随着微型光谱仪技术的发展和Android系统的持续优化,我们可以预见"Spectrometer-Demo"这样的应用将有更广阔的发展空间。未来的版本可能会增加更多高级功能,如深度学习辅助的光谱识别,以及与其他物联网设备的集成,进一步提升光谱分析的智能化水平。 总结,"Spectrometer-Demo"作为一款基于Android的光谱采集软件,利用Java语言的强大功能,为微型光谱仪的移动应用开辟了新的道路。它不仅展示了科技与日常生活的深度融合,也为相关领域的研究和实践提供了便捷的工具。
2024-08-29 15:56:03 405KB Java
1
基于openCV的检测系统源码.zip 基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip
2024-08-29 15:00:50 2.64MB opencv
1
图腾柱功率因数校正(PFC)技术是一种用于提高电力系统中交流-直流(AC-DC)转换器输入端功率因数的有效方法。它在电源设计领域中扮演着重要角色,因为高功率因数可以减少电网污染,提高能源效率,并符合许多国家的电力规范。PSIM(Power Simulation Inc.)是一款强大的电源系统建模和仿真工具,版本6.0提供了丰富的功能来模拟和分析各种电源拓扑,包括图腾柱PFC。 图腾柱PFC,也称为连续电流模式(CCM)单管PFC,因其电路布局形似图腾柱而得名。这种拓扑由两个开关器件(通常是MOSFET或IGBT)和一个电感组成,能够实现电流连续流动,从而提高功率因数。在PSIM6.0中,用户可以通过构建电路模型来仿真图腾柱PFC的工作原理,包括开关器件的开通和关断控制、电流波形、电压调节以及谐波分析等。 要进行图腾柱PFC仿真,你需要了解基本的电路原理和PSIM软件的操作。PSIM6.0界面友好,支持用户通过图形化方式搭建电路模型。你可以添加二极管、电容、电感、电阻、开关元件等,并配置它们的参数以适应具体的设计需求。此外,PSIM还允许用户定义控制算法,如平均电流模式控制,以实现PFC的动态性能优化。 在搭建图腾柱PFC模型时,关键步骤包括设置开关器件的开关频率、死区时间,以及确定电感和电容的值,这些参数将影响到功率因数、效率和纹波电流。在仿真过程中,你可能会关注以下几个重要指标: 1. 功率因数:这是衡量设备消耗的视在功率与实际功率之比,目标是使其接近1,以减小电网的无功功率需求。 2. 输出电压稳定性:PFC的主要任务是稳定直流侧的电压,使其不受输入电压波动的影响。 3. 谐波含量:低谐波意味着更少的电网污染,因此应尽量降低电流和电压的谐波失真。 通过PSIM6.0的仿真结果,你可以观察到电流和电压波形,计算上述关键指标,并对设计进行优化。如果在资源中包含了PSIM6.0的安装包,你可以按照提供的博客教程安装并实践图腾柱PFC的建模和仿真。 图腾柱PFC是电源设计中的重要技术,而PSIM6.0则是实现其仿真的有力工具。通过深入理解和应用这两个知识点,电源工程师可以设计出高效、低谐波的电源系统,满足现代电子设备的需求。
2024-08-29 14:45:28 2.95MB 图腾柱PFC
1
基于AUC的特征选择是一种用于机器学习中降维和提高模型泛化能力的方法。AUC(Area Under Curve,ROC曲线下的面积)是评估分类模型性能的重要指标,尤其在样本不平衡的情况下表现更加稳定。传统的特征选择方法往往关注单个特征的好坏,而忽视了特征间的互补性,即不同特征之间如何协同工作共同提高分类性能。 ANNC(Maximizing Nearest Neighbor Complementarity)是一种新颖的特征选择方法,它在AUC的基础上,通过考虑最近邻的互补性来提高特征选择的效率。这种方法不仅关注最近邻错分类信息(nearest misses),也考虑最近邻正分类信息(nearest hits),从而全面评价特征对之间的互补性。互补性意味着某些特征在组合中相互增强,通过相互协作能达到更佳的分类效果。 在ANNC方法中,最近邻的计算是在特征空间的不同维度上进行的,以此来评估特征之间的互补性。这种方法的优势在于它提供了一种新颖的方式来判断在另一个特征的辅助下,一个特征的区分度如何。然而,邻域信息通常对噪声很敏感,仅仅考虑一侧的信息(如最近邻错分类)可能会忽视正分类对特征互补性的影响。 ANNC方法的核心在于将这种局部学习基于的互补性评价策略整合到基于AUC的特征选择框架中,从而全面评价特征对之间的互补性。这样做有助于捕捉那些能够相互协作、共同提升识别性能的互补特征。 本文作者提出了ANNC这一算法,并在公开的基准数据集上进行了广泛的实验,以多种度量标准验证了新方法的有效性。实验结果表明,在不同的数据集和各种度量指标下,ANNC方法都显示出显著的性能提升。 ANNC方法不仅考虑了每个特征本身的特性,而且结合了特征之间的相互作用,从而提供了一种更为全面的特征选择策略。这对于复杂的学习场景,如文本分类、图像检索、疾病诊断等,都有着极其重要的意义。由于这些场景下的样本通常由大量的特征来描述,因此找到一个有效的特征子集,对于提高分类器性能和模型的可解释性至关重要。 ANNC的研究论文强调了特征互补性在提高分类性能方面的重要性,并通过实际的实验验证了这一点。特征互补性的概念可以推广到不同的机器学习任务中,而不仅仅是特征选择。在特征工程领域,了解特征之间的关系有助于构建更加强大和鲁棒的机器学习模型。因此,ANNC的贡献不仅限于其作为一个新的特征选择算法,更在于它为我们理解特征相互作用提供了一种新的视角。
2024-08-29 13:36:06 767KB 研究论文
1