研究生英语听说读写教程下册第六单元textA
2021-11-28 21:19:23 33KB POPPING THE QUESTION
1
判断两个问题句是否表达一个意思。包含 "id","qid1","qid2","question1","question2","is_duplicate"
2021-11-15 22:06:37 13.19MB Quora 深度学习
1
FinBERT-QA:使用 BERT 回答金融问题 FinBERT-QA 是一个问答系统,用于从数据集的任务 2 中检索有金融段落。 请参阅获取更多信息。 该系统使用来自信息检索和自然语言处理的技术,首先使用 Lucene 工具包检索每个查询的前 50 个候选答案,然后使用预训练的模型的变新排列候选答案。 FinBERT-QA 从 Huggingface 的库构建并应用 Transfer and Adapt [ ] 方法,首先将预训练的 BERT 模型转移并微调到一般 QA 任务,然后使用 FiQA 数据集将该模型适应金融领域。 转移步骤在的数据集上使用微调的 BERT 模型 ,它从 TensorFlow 转换为 PyTorch 模型。 在三个排名评估指标(nDCG、MRR、Precision)上结果平均提高了约 20%。 Overview of the QA pipeline:
1
采用Java编写一个软件,100以内的口算题,加减运算,运算结果位于[0,100]区间内,要求自动生成题库,实现自动判分,自动生成成绩,并且有图形化CUI界面
2021-11-01 16:08:23 97KB 软件构造
1
BERT和知识提炼的问题解答 该存储库包含必要的代码,以便微调SQuAD 2.0数据集上的BERT。 此外,的技术是通过微调施加使用BERT作为教师模型小队2.0数据集。 使用Google Colab的1个Tesla V100 GPU获得了所有结果。 1.什么是SQuAD? 斯坦福问答数据集(SQuAD)是一种阅读理解数据集,由人群工作人员在一组Wikipedia文章上提出的问题组成,其中每个问题的答案是对应阅读段落或问题的一段文本或跨度可能无法回答。 SQuAD 2.0将SQuAD 1.1中的100,000个问题与超过50,000个由对抗性工作者对抗性编写的问题相结合,看起来类似于可回答的问题。 为了在SQuAD 2.0上取得出色的成绩,系统不仅必须在可能的情况下回答问题,而且还必须确定该段落何时不支持任何答案并放弃回答。 有关SQuAD数据集和当前排行榜的更多信息,您可以访问以下。
1
ChineseNLP:中文NLP各领域的数据集,SOTA结果
1
交互式答题-hbuilder-question_1.0.0.zip-学习代码
2021-10-14 18:04:48 2KB hbuilder
1
简单的变形金刚 该库基于HuggingFace的库。 使用简单的Transformers,您可以快速训练和评估Transformer模型。 初始化模型,训练模型和评估模型仅需要三行代码。 技术支持 序列分类 代币分类(NER) 问题回答 语言模型微调 语言模型训练 语言生成 T5型号 Seq2Seq任务 多模态分类 对话式AI。 文本表示生成。 目录 设置 与conda 从安装Anaconda或Miniconda Package Manager 创建一个新的虚拟环境并安装软件包。 conda create -n st python pandas tqdm conda activate st如果使用cuda: conda install pytorch>=1.6 cudatoolkit=11.0 -c pytorch否则: conda install pytorch cpuonly
1
24点题目和答案 格式: 1118 (1+1+1)*8 1126 (1+1+2)*6 1127 (1+2)*(1+7) 1128 (1+1*2)*8
2021-09-29 09:08:37 18KB 24点
1
Agricultural Knowledge Graph 由于工作原因,该项目已停止维护。因此项目代码仅供参考,项目中包含的数据可免费用于学术等非商业用途。 相关工作请引用paper: AgriKG: An Agricultural Knowledge Graph and Its Applications[C]. DASFAA (3) 2019: 533-537 项目介绍: 本项目是上海市《农业信息服务平台及农业大数据综合利用研究》子课题《上海农业农村大数据共享服务平台建设和应用》的研究成果。 该课题是由上海市农业委员会信息中心主持,以“致富农民、服务市民、提高行政管理效能”为目标,充分发挥大数据在农业农村发展中的重要功能和巨大潜力,重点建设上海市级农业农村大数据中心,促进信息资源的共建共享和创新应用。 华东师范大学数据科学与工程学院(以下简称华师大数据学院)作为课题主要参与单位以实现智慧
1