内容概要:本文详细探讨了模型预测控制(MPC)在混合动力汽车能量管理中的应用。首先介绍了车速预测模型,如BP神经网络和RBF神经网络,用于预测未来的车速信息。接着讨论了动态规划(DP)算法与MPC的结合,实现了基于预测的优化控制策略。通过逆向迭代和正向求解的方法,能够在预测时域内找到局部最优解,从而提高燃油经济性和能量利用效率。此外,还提到了在线预测的魅力,即将预测模型与MPC结合,实现接近实时的最优能量管理。文中提供了大量伪代码示例,展示了具体的实现过程和技术细节。 适合人群:从事混合动力汽车研究的技术人员、高校师生及相关领域的研究人员。 使用场景及目标:适用于希望深入了解混合动力汽车能量管理策略优化的研究者,旨在通过MPC和DP的结合,提升车辆的燃油经济性和能量利用效率。 其他说明:文章不仅提供了理论分析,还包括了大量的代码示例,有助于读者更好地理解和实践。同时,作者分享了一些个人经验,如状态离散化策略、遗传算法优化BP神经网络等,进一步丰富了内容。
2025-07-26 14:29:48 1.47MB
1
内容概要:JSXZ集团的网络信息安全规划方案(2024~2026年)旨在应对日益复杂的网络安全威胁,确保集团信息资产的安全性与可用性。该规划基于对现有安全体系的深入评估,明确了四大业务部门及13家子公司的安全需求,覆盖营销、仓储物流、生产管理等多个核心职能。规划的重点包括构建动态安全体系、多层次防御体系、全生命周期安全管理及主动防御体系。具体措施涵盖安全技术的迭代升级、安全运营的持续优化、安全培训与意识提升、网络层与应用层防御、数据加密与备份、安全管理制度的制定、安全运维平台的建设等。规划分为三个阶段实施:第一期(2024年)侧重合法合规建设,第二期(2025年)构建动态防御体系,第三期(2026年)实现全方位安全运营。此外,规划还详细列出了软硬件设备建设任务、第三方安全服务建设任务及网络安全建设任务的工作计划。 适合人群:适用于JSXZ集团的高层管理人员、信息安全管理人员、IT运维团队、安全团队及其他相关人员。 使用场景及目标:①确保集团信息资产的安全性与可用性,提升整体防护能力;②构建全面、动态、实时的网络安全运营体系,保障业务连续性;③通过系统化、结构化的建设方法,逐步完善和提升集团的网络防御能力;④确保信息安全体系框架既符合国内法律法规要求,又具备国际先进水平;⑤通过定期的安全培训和演练,提升全员的安全意识和技能。 其他说明:规划参考了国家及行业技术标准,如《中华人民共和国网络安全法》、《信息安全技术网络安全等级保护基本要求》等,确保方案的合法合规性。同时,引入了国际权威信息安全认证的知识体系和最佳实践,如NISP、CISP和CISSP,全面提升企业的信息安全防护能力。
2025-07-25 16:34:18 12.21MB 网络信息安全 数字化转型
1
内容概要:本文探讨了如何利用动态规划(Dynamic Programming, DP)和模型预测控制(Model Predictive Control, MPC)实现并联混合动力电动汽车的优化控制。文中详细介绍了这两种方法的工作原理及其结合方式,即通过将DP嵌入MPC的滑动窗口中进行滚动优化,从而达到节省燃料消耗的目的。此外,还提供了具体的MATLAB代码示例,包括状态转移矩阵构建、滚动优化循环以及实时控制循环等关键部分,并展示了实验结果表明该策略能够有效减少油耗并稳定电池荷电状态(State of Charge, SOC)。 适用人群:从事汽车工程、自动化控制领域的研究人员和技术人员,特别是关注新能源汽车节能技术的专业人士。 使用场景及目标:适用于希望深入了解并联混合动力电动汽车控制系统的设计原理和实现细节的研究者;旨在提高车辆能源效率的同时保持良好的驾驶性能。 其他说明:文中提到的方法虽然增加了算法复杂度,但由于现代车载芯片的强大运算能力,使得这种方法成为可能。对于有兴趣进一步探索相关主题的人士来说,这是一份非常有价值的参考资料。
2025-07-24 16:32:16 2.51MB
1
内容概要:本文深入探讨了基于麻雀搜索算法的栅格地图机器人路径规划问题,通过MATLAB实现该算法并详细注释代码。文章介绍了栅格地图的概念及其在机器人路径规划中的应用,重点讲解了麻雀搜索算法的特点和优势,并展示了如何在MATLAB中构建栅格地图、设置参数、实现算法以寻找最优路径。此外,文章还讨论了如何修改栅格地图以适应不同应用场景,并探讨了其他优化算法(如遗传算法、蚁群算法、粒子群算法)在此模型中的应用可能性。 适合人群:从事机器人路径规划研究的技术人员、研究人员及高校相关专业学生。 使用场景及目标:适用于需要在复杂环境下进行机器人路径规划的研究项目,旨在提高路径规划的效率和准确性。通过学习本文,读者可以掌握基于麻雀搜索算法的路径规划方法,并能够将其应用于实际工程中。 其他说明:本文不仅提供了一种具体的算法实现方式,还为未来的算法改进和其他优化算法的应用提供了思路和参考。
2025-07-17 10:42:19 238KB MATLAB 优化算法
1
动态规划是一种重要的算法思想,广泛应用于计算机科学,特别是在解决最优化问题时,如路径规划、背包问题、字符串匹配等。IOI(国际信息学奥林匹克竞赛)国家集训队的论文和文档是深入学习动态规划的宝贵资源,这些资料通常包含了各种复杂度和难度的实例,适合参赛者和对算法感兴趣的学者进行深入研究。 动态规划的核心思想是将大问题分解为相互关联的小问题,然后通过解决这些小问题来得到原问题的解。它基于“最优子结构”和“无后效性”两个关键特性。最优子结构意味着一个最优解包含其子问题的最优解;无后效性则表示一旦某个状态确定,不会影响后续的选择。 动态规划的主要类型包括: 1. **线性DP**:这类问题通常用一维数组表示状态,如斐波那契数列、最长公共子序列等。它们的转移方程具有明确的线性关系。 2. **二维DP**:例如,二维矩阵的最短路径问题(如Dijkstra或Floyd算法的扩展)、网格中的行走问题等。这类问题使用二维数组存储状态。 3. **状态压缩DP**:当状态数量巨大但实际有效的状态较少时,可以使用位运算进行状态压缩,如求解子序列和问题。 4. **树形DP**:适用于处理树结构的问题,如求解树的直径、最小生成树等。这类问题通常需要自底向上的思考方式。 5. **链状DP**:在链状结构(如图的链状结构)中,可以采用自顶向下的方式求解,如最长递增子序列。 6. **记忆化搜索**:对于递归问题,通过保存已计算过的子问题结果避免重复计算,提高效率,如求解斐波那契数列、卡特兰数等。 7. **状态转移图**:构建状态转移图可以帮助理解问题,例如在解决最短路径问题时,可以画出状态之间的转移。 8. **滚动数组/矩阵**:当存储空间有限时,可以通过滚动数组或矩阵来减少空间复杂度,如求解斐波那契数列。 IOI国家集训队的论文和文档可能涵盖了以上各类动态规划问题,通过深入阅读和实践,不仅能掌握动态规划的基本原理,还能了解如何在实际问题中灵活应用。同时,这些资料通常会提供详细的解题思路、代码实现以及时间、空间复杂度分析,对于提升算法思维和编程能力非常有帮助。 动态规划是信息学竞赛和算法设计中的核心技能之一,理解和掌握它能帮助你在解决复杂问题时游刃有余。通过IOI国家集训队的资源,你可以系统地学习并提高这方面的能力,从而在比赛中取得优异成绩,或者在实际工作中解决各种复杂计算问题。
2025-07-12 11:46:18 2.4MB 国家集训队 动态规划 论文
1
内容概要:本文介绍了利用MATLAB代码实现无人机集群避障、多智能体协同控制以及路径规划的技术细节。主要内容分为三部分:一是四旋翼编队控制,涉及目标分配、全局和局部路径规划;二是多人机模拟,涵盖复杂机制和动态行为建模;三是单机路径规划,采用RRT*算法和B样条曲线优化方法。文中还分享了一些关键技术和实战经验,如虚拟弹簧模型用于保持编队稳定,邻域更新机制确保动态拓扑变化的有效管理,以及B样条拟合实现路径平滑化。 适合人群:从事无人机研究、自动化控制领域的科研人员和技术爱好者。 使用场景及目标:适用于希望深入了解无人机集群控制理论并掌握具体实现方法的研究者。目标是帮助读者理解无人机集群避障、协同控制和路径规划的基本原理及其MATLAB代码实现。 阅读建议:建议读者首先熟悉MATLAB编程环境,然后逐步深入理解各个模块的功能和实现方式。同时,可以通过修改参数来探索不同配置下系统的行为特性,从而积累实践经验。
2025-07-08 23:07:05 1.1MB
1
MATLAB代码合集:无人机集群避障、多智能体协同控制与路径规划的编程实践,无人机集群协同控制:多智能体避障与路径规划的MATLAB代码集,无人机集群避障、多智能体协同控制、路径规划的matlab代码 一共三个代码: ① 四旋翼编队控制:包括目标分配、全局和局部路径规划 ② 无多人机模拟复杂机制和动态行为 ③ 单机模拟,路径跟随、规划;无人机群仿真控制 ,关键词:四旋翼编队控制; 无人集群避障; 多智能体协同控制; 路径规划; MATLAB代码; 复杂机制动态行为模拟; 单机模拟路径跟随; 无人机群仿真控制;,MATLAB代码:无人机集群避障协同控制与路径规划
2025-07-08 23:01:01 1.61MB
1
VREP Coppeliasim与MATLAB联合实现机器人轨迹控制仿真:机械臂墙绘轨迹规划与算法详解,基于V-REP CoppeLiasim和Matlab的机器人轨迹控制仿真:机械臂绘制墙画与轨迹规划算法学习示例,vrep coppeliasim+matlab,机器人轨迹控制仿真,利用matlab读取轨迹并控制机械臂在墙上绘图,里面有轨迹规划的相关算法。 此为学习示例,有详细的代码和说明文档 ,vrep;coppeliasim;matlab;机器人轨迹控制仿真;机械臂绘图;轨迹规划算法;学习示例;代码与文档,利用CoppeliaSim和Matlab仿真机器人墙上绘图的轨迹控制策略
2025-07-08 19:14:32 2.45MB 正则表达式
1
算法设计与分析 实验4 动态规划法求扔鸡蛋问题
2025-07-07 21:17:28 7KB 动态规划
1
机械臂技术在自动化和机器人领域占据重要地位,它们能够执行多样化的任务,从简单的抓取和放置到复杂的操作。在本文件内容中,涉及机械臂的关键技术领域,即使用强化学习中的PPO(Proximal Policy Optimization)算法进行轨迹规划,并在仿真环境中对机械臂进行训练和评估。同时,CR5避障夹爪作为机械臂的一个组成部分,展示了在执行任务时具备避障能力的重要性。 PPO算法是一种先进的强化学习方法,旨在提高策略的稳定性和性能。在机械臂的轨迹规划中,PPO算法通过优化决策策略来指导机械臂的运动,以便更有效地完成任务。轨迹规划是机器人学中一个核心问题,它涉及到规划出一条从起点到终点的路径,同时考虑到机械臂的动力学限制和可能的障碍物。一个良好的轨迹规划算法能够确保机械臂运动的连贯性、稳定性和避障能力。 仿真训练评估是验证机械臂算法性能的一个重要步骤,它可以模拟机械臂在真实世界中的操作,并对策略进行细致的调整。这种训练方式可以在不损耗实际硬件的前提下,进行大量的试错和优化,这对于开发复杂的机械臂系统尤其重要。 CR5避障夹爪作为机械臂的末端执行器之一,它的设计必须能够适应不同的任务环境。避障功能是评估一个机械臂系统是否先进的重要指标,因为它涉及到机械臂在执行任务时对外界环境变化的反应能力。避障夹爪的加入,无疑增强了机械臂在复杂环境中的适应性和安全性。 文件内容中还包含了“简介.txt”,这可能是对整个项目的概述,提供项目背景、目标、关键技术和预期成果等基本信息。而“DRL_Motion_Planning-master”部分则可能是包含项目主要代码、算法实现和相关文档的文件夹。在“机械臂_PPO算法_轨迹规划_仿真训练评估_CR5避障夹爪”文件中,可能是对整个项目的详细说明,包含仿真实验的设置、测试结果和分析等。 从这些信息可以看出,整个项目是一个高度集成的研究工作,它不仅关注算法的理论研究,也关注实际应用中可能遇到的工程问题。在自动化领域,这样的研究有助于推动机器人技术的发展,特别是在工业自动化、医疗、太空探索等领域。 此文件内容涉及了机械臂设计与控制的关键技术,以及如何通过先进的算法和仿真技术来提高机械臂性能。通过PPO算法优化轨迹规划,结合避障夹爪的设计,整个项目展示了机械臂技术在多个层面的进步,并提供了一个评估和优化机械臂系统的全面框架。
2025-07-05 09:36:09 1014KB
1