基于BO-GRU贝叶斯优化门控循环单元的数据分类预测(Matlab完整程序和数据) 输入多个特征,分四类。 基于BO-GRU贝叶斯优化门控循环单元的数据分类预测(Matlab完整程序和数据) 基于BO-GRU贝叶斯优化门控循环单元的数据分类预测(Matlab完整程序和数据)
MATLAB实现GWO-GRU灰狼算法优化门控循环单元多输入单输出回归预测(完整源码和数据) 灰狼算法优化参数为初始学习率,隐藏层节点个数,正则化参数。 数据为多输入回归数据,输入6个特征,输出1个变量。 运行环境MATLAB2020b及以上,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
基于机器学习GRU_CNN_KNN_SVM_RF5种实现的web攻击检测系统项目源码+数据集+模型+项目说明.7z 基于聚类的XSS和SQL注入检测 基于机器学习的XSS和SQL注入检测 现了基于GRU,CNN,KNN,SVM,RF共五个检测模型 检测过程:数据加载-》数据预处理(urldecode和转小写)->向量化(预训练word2Vec模型,padding补齐)->模型训练->模型预测->模型评估
MATLAB实现WOA-GRU鲸鱼算法优化门控循环单元多输入单输出回归预测(完整源码和数据) 鲸鱼算法优化参数为隐含层节点数,最大训练代数,初始学习率参数。 数据为多输入回归数据,输入7个特征,输出1个变量。 运行环境MATLAB2018b及以上,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
MATLAB实现PCA-GRU主成分降维结合门控循环单元多输入单输出回归预测(完整源码和数据) 数据为多输入回归数据,输入12个特征,输出1个变量。 运行环境MATLAB2020b及以上。
基于GRU循环神经网络空中目标意图识别_kereas源码+数据+程序说明.zip 程序为使用GRU循环神经网络进行意图识别的程序 程序设计语言为Python 3.7.6;开发环境为Anaconda。循环神经网络模型由Python的keras 2.3.0库实现。 数据集为:SCENARIO_DATA_UTF8.zip 代码可以生成损失函数曲线,精确度曲线; 可自定义修改梯度下降方法,损失函数。
基于改进GRU(添加注意力机制)循环神经网络空中目标意图识别_kereas源码+数据+程序说明.zip 程序设计语言为Python 3.7.6;集成开发环境为Anaconda。循环神经网络模型由Python的keras 2.3.0库实现。 数据集为:SCENARIO_DATA_UTF8.zip getData()函数负责读取xml文件,并处理成数据序列及对应的标签序列。参数data_length决定了所读取序列的长度。 getDocumentList()函数用于辅助getData()函数进行数据读取。 modelAttentionAfterGRU()用于实现在GRU层之后添加Attention层的模型。 modelAttentionBiLSTM()用于实现在双向GRU层之后添加Attention层的模型。 全局变量INPUT_DIM表示输入特征的维度;TIME_STEPS = 500 表示输入到神经网络层序列的长度。 主函数中给出了一个示例:读取数据,划分训练集和测试集,多次训练神经网络模型进行交叉验证,计算加权错误率Weighted Error Rate和训练模型所用时间, 最后将
GRU与CNN的输出整合输出
2022-12-03 16:27:17 2KB 故障诊断
1
串行LSTM-GRU故障诊断
2022-12-03 16:27:17 1.22MB 故障诊断
1
MATLAB实现CNN-GRU卷积门控循环单元多输入回归预测预测(完整源码和数据) 数据为多输入回归数据,输入12个特征,输出单个变量,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2020b及以上,运行主程序即可。