110kV变电站电气一次部分的设计与选型流程,涵盖主接线方案的选择与比较、短路电流计算、电气一次设备选型等方面。首先对多个主接线方案进行可靠性、灵活性和经济性评估,最终确定最优方案。接着,基于欧姆定律和基尔霍夫定律计算各节点的短路电流,为设备选型提供依据。随后,根据计算结果选择适合110kV系统的变压器、断路器、隔离开关、互感器和避雷器等设备。最后,利用AutoCAD2014软件绘制了主接线A0大图,直观展示设计方案。这份说明书不仅指导变电站建设,还为后续运维和检修提供了依据。 适合人群:从事电力系统设计、建设和运维的技术人员,尤其是参与110kV及以上电压等级变电站项目的工程师。 使用场景及目标:适用于需要深入了解110kV变电站电气一次部分设计原理和技术细节的专业人士,帮助他们掌握主接线方案选择、短路电流计算和设备选型的方法,提高设计质量和效率。 其他说明:本文档仅作为学习和参考使用,实际项目中的设计和实施可能更为复杂,需结合实际情况进行调整。
2025-11-07 10:58:12 1.65MB
1
第25章 电机控制PWM 25.1 简介 电机控制 PWM(MCPWM)非常适用于三相交流 AC 和直流 DC 电机控制应用,但它还可 以用于其它需要通用定时、捕获和比较的应用中。 25.2 概述 MCPWM 含有 3 个独立的通道,每个通道包括:  1 个 32 位定时器/计数器(TC);  1 个 32 位界限寄存器(LIM);  1 个 32 匹配寄存器(MAT);  1 个 10 位死区时间寄存器(DT)和相应的 10 位死区时间计数器;  1 个 32 位捕获寄存器;  2 个极性相反的已调整的输出(MCOA 和 MCOB);  1 个周期中断、1 个脉宽中断和 1 个捕获中断。 输入引脚 MCI0-2 可触发 TC 捕获或使通道的计数值加 1。全局异常中断输入可强制所有通 道进入“有效”状态并产生一个中断。 25.3 引脚描述 表 25.1所示为MCPWM的引脚。 表 25.1 引脚汇总 引脚 类型 描述 MC0A0-2 O 通道 0-2,输出 A MC0B0-2 O 通道 0-2,输出 B MCABORT I 低电平有效的快速中止 MCFB0-2 I 输入 0-2 1
2025-11-07 10:46:39 25.58MB 1868
1
至死区时间计数器到达 0。在死区时间内,MCOA和MCOB输出电平都无效。图 25.4所示为带 死区时间的边沿对齐模式的操作,图 25.5所示为带死区时间的中心对齐模式的操作。 图 25.4 带死区时间的边沿对齐 PWM 的波形,POLA=0 15
2025-11-07 10:44:55 25.58MB 1868
1
61850标准规范协议,全称为IEC 61850,是国际电工委员会(International Electrotechnical Commission, IEC)制定的一套用于电力系统自动化和保护设备的通信协议。这个标准旨在实现变电站自动化系统(Substation Automation System, SAS)中的互操作性和数据交换,以提高电力系统的可靠性和效率。61850标准不仅涵盖了变电站内部的数据通信,也涉及了与其他智能电网组件的通信。 该规范的主要目标是消除不同制造商设备之间的兼容性问题,提供一个开放、标准化的接口,使得不同厂商的设备能够无缝集成。61850协议基于面向服务的架构(Service-Oriented Architecture, SOA),使用了抽象通信服务接口(Abstract Communication Service Interface, ACSI)和MMS(Manufacturing Message Specification)协议,确保了设备间的通信效率和灵活性。 61850标准分为多个部分,每个部分详细阐述了不同的主题,包括: 1. **数据模型**:定义了变电站设备的数据结构和逻辑,如逻辑节点(Logical Node, LN)、数据对象(Data Object, DO)和数据属性(Data Attribute, DA)。这些定义使得不同设备可以理解和共享相同的数据。 2. **通信服务**:规定了变电站设备间数据交换的协议,如MMS、GOOSE(Generic Object Oriented Substation Event)和SV(Sampled Values)服务。GOOSE用于快速传输保护和控制信息,而SV则用于实时传输模拟量采样值。 3. **配置**:定义了设备配置文件(Configuration Description Language, CSDL)的格式,用于描述变电站的逻辑结构和设备配置。 4. **工程过程**:指导如何进行系统集成、调试和维护,包括数据一致性检查、配置验证和设备互操作性测试。 5. **设备行为**:规定了设备在不同操作状态下的行为,如启动、停止、故障恢复等。 6. **网络安全**:提供了安全性的指南,包括认证、授权和加密机制,以保护电力系统免受恶意攻击。 61850标准的应用大大简化了变电站的自动化设计,减少了现场接线工作,提高了系统集成的速度和质量。同时,通过实时数据交换,它支持了高级应用,如状态估计、故障定位和自愈电网。 在电力行业中,熟悉并掌握61850标准对于设计、实施和维护变电站自动化系统至关重要。工程师需要理解数据模型的概念,学会使用配置工具,以及掌握通信服务的使用方法,才能有效地应用61850协议。 61850标准规范协议是电力系统自动化的核心技术之一,对于推动智能电网的发展起到了关键作用。通过深入学习和实践,可以提高电力系统的可靠性和运营效率,降低运行成本。
2025-11-06 17:00:21 3.41MB
1
智慧厨房不规范行为检测数据集是以Pascal VOC格式和YOLO格式组织的,包含了7510张高分辨率的jpg图片及其对应的标注信息。数据集中的标注类别共9种,分别为手套、口罩、口罩不规范佩戴、无手套、无帽子、无口罩、手持手机、帽檐向后和帽檐向前。每张图片都配有一个VOC格式的xml文件和一个YOLO格式的txt文件,通过矩形框标识出图片中相应不规范行为的位置。 该数据集的标注工具为labelImg,是常用的手动标注工具,能够帮助研究者快速准确地在图像中进行目标框的标注。标注规则相对简单明了,只需使用矩形框对图像中的不规范行为进行标注。数据集中涵盖了7510张图像,每张图像都包含对应的标注文件,没有分割路径信息,不包含训练模型或权重文件,也不保证模型精度。 9个标注类别涉及了厨房工作人员在卫生和个人防护方面的常见不规范行为,这些行为包括个人防护装备(PPE)的缺失或不当使用。例如,手套(gloves)和口罩(mask)的正确佩戴是防止食物污染和病毒传播的重要措施,而口罩不规范(mask_improperly)标注类别则涵盖了口罩佩戴不正确的情况。无手套(no_gloves)、无帽子(no_hat)和无口罩(no_mask)的标注类别涉及缺少相应防护装备的情况。手持手机(phone)在操作过程中被认为是一种不卫生的行为,可能造成食物污染。而帽檐向后(visor_back)和帽檐向前(visor_forward)则关注厨师帽佩戴是否规范。 数据集中的标注总框数达到了62832个,这意味着每张图片平均有8.37个矩形框用于标注不同的不规范行为。在各个类别中,部分标注框数量差异较大,如visor_back类别框数最多,而mask_improperly的框数相对较少。这种差异可能反映了在实际厨房操作中某些不规范行为出现的频率更高。 这个数据集为研究人员提供了一个实用的资源,用于训练和评估针对厨房环境下的不规范行为检测模型。通过对这些数据的分析和模型的训练,可以进一步提高厨房工作人员的安全意识和卫生习惯,减少食物安全风险,增强厨房作业的安全性。
2025-11-05 13:26:40 1.06MB 数据集
1
6-ACI 301-2010结构混凝土规范.pdf
2025-11-04 12:51:20 29.14MB
1
在现代电力系统中,智能变电站作为保障电网安全、高效、稳定运行的关键设施,其作用日益凸显。智能变电站内部使用了大量先进的技术和设备,其中同步相量测量装置(PMU)就是其中的一种重要设备。DL_T_1405.1-2015《智能变电站的同步相量测量装置 第1部分 通信接口规范》为该类设备在智能变电站中的应用提供了标准化的通信接口规范。这一规范对提升整个电力系统的运行效率和稳定性、降低维护成本以及增强系统的互操作性有着重要的意义。 同步相量测量装置(PMU)是一种可以实时测量电压和电流相量,并通过GPS等定位系统提供时间标记,从而实现电网同步的高精度测量设备。其测量结果可以被应用于电网的实时监测、控制和自动化决策中。在智能变电站中,PMU能够提供关键的同步信息,对于保障电网的稳定运行以及提高电能质量至关重要。 DL_T_1405.1-2015规范主要涵盖了同步相量测量装置在智能变电站中的通信接口方面的要求,它详细规定了同步相量测量装置如何通过通信网络与其他智能设备以及监控中心进行数据交换。这一规范包括了以下几个方面的重要内容: 1. 通信协议的选择:规定了同步相量测量装置需要支持的通信协议类型,以及不同协议适用的场合和条件。这些协议可能包括IEC 61850标准中规定的通信协议,或其他适用于实时数据传输的协议。 2. 数据格式及编码:详细定义了传输的数据格式,包括数据元素的编码、数据结构以及相应的语义解释。确保了数据的标准化和兼容性,以便不同厂商的设备能够在同一个网络环境下正常交互。 3. 通信服务与功能:明确了PMU需要提供的通信服务类型,例如数据采样值传输服务、对等通信服务等,以及各自的功能和适用场景。这些服务能够满足智能变电站中不同层级、不同功能需求的数据交换。 4. 通信网络要求:规定了同步相量测量装置在通信网络中的使用要求,包括网络延迟、数据吞吐量、可靠性等性能指标,保障了实时数据传输的准确性和及时性。 5. 安全性要求:强调了同步相量测量装置在数据传输过程中的安全性要求,包括数据加密、访问控制等,确保了数据传输的安全性和隐私保护。 6. 接口的物理和电气要求:除了上述软性规定外,规范还涉及到了同步相量测量装置与通信接口相关的物理层和电气层的技术要求,确保了装置的物理连接和电气特性符合标准。 通过实施DL_T_1405.1-2015标准,可以确保智能变电站中同步相量测量装置与其他设备及系统间的数据交换具备互操作性和高效性,为智能电网的可靠运行提供了坚实的技术支持。
2025-11-02 16:17:20 717KB
1
电力系统时间同步系统规范是一个专门针对电力系统中时间同步系统制定的标准,它详细规定了时间同步系统的统一接口、系统组成以及时间同步的准确度要求。这个规范的目的是确保电力系统中的时间同步系统能够与各类被对时设备有效地进行互联,并且实现不同厂商之间时间同步装置的兼容性,以支持电力系统的网络化和自动化。 在深入探讨这一规范之前,我们需要了解几个基础知识点: 1. 时间同步系统的基本概念:时间同步系统是指在一个系统或网络中,多个设备能够保持统一的时间基准。这样的系统在电力系统中尤为重要,因为它有助于确保系统操作的同步性、减少故障概率,并提高电网的稳定性和可靠性。 2. 时间同步的重要性:在电力系统中,时间同步对于故障检测、隔离和恢复(故障诊断)、负载管理、需求响应和自动化控制等应用至关重要。它确保不同地理位置的事件可以被准确记录和同步分析,这对于保障整个电网的安全和稳定运行至关重要。 3. 时间同步技术:目前广泛使用的时间同步技术包括但不限于网络时间协议(NTP)、精确时间协议(PTP,IEEE 1588标准)、全球定位系统(GPS)和伽利略系统等。这些技术通过不同的媒介和算法来实现精确的时间同步。 接下来,我们将详细介绍本标准中所包含的关键知识点: 1. 统一接口规范:这是时间同步系统的核心内容之一。统一接口包括物理接口和数据接口两个方面。物理接口标准涉及连接器的类型、电缆规格以及电气特性等;数据接口标准则包括数据传输速率、帧结构、通信协议和封装方式等。统一接口的定义有利于不同制造商的设备间实现即插即用的互操作性。 2. 系统组成:规范会详细描述时间同步系统的构成,这可能包括时间同步服务器、时间源、传输媒介和授时终端等。每个组件的功能和性能要求都会在标准中得到明确。 3. 时间同步的准确度:准确度要求是时间同步系统中的核心指标之一,它直接影响到电网自动化控制和管理的效率和准确性。标准中会规定不同类型设备的时间同步误差范围,比如主站、子站和终端设备在正常运行条件下的时间同步误差上限。 4. 互联要求:规范将详细描述不同设备间互联的要求,比如对于对时信号的兼容性、对时精度要求、信号传输的冗余性和可靠性要求等。这确保了即便在复杂多变的电网环境中,时间同步系统仍能保持高效稳定的工作状态。 5. 安全和可靠性:在电力系统时间同步中,安全性同样重要。规范中将包含确保时间同步系统的安全性措施,例如数据加密、身份验证机制和故障恢复策略,以及对可能的网络攻击和故障模式的防护措施。 6. 兼容性和扩展性:在电力系统时间同步系统规范中,兼容性和扩展性也是被强调的重要方面。规范会提供机制和方法,以保证新一代时间同步装置能够与现有的系统兼容,同时允许系统的平滑扩展。 7. 定时和监控:时间同步系统还需要具备定时和监控功能,包括但不限于同步状态的监测、同步质量的评估、以及故障和异常的报警等。 8. 文档和测试:规范中也会详细规定相关技术文档的要求,以及必须进行的测试和验证,确保所有要求都能得到实际满足。 这些知识点的综合运用能够为电力系统提供一个精确、可靠和安全的时间同步解决方案,从而提升整个电力系统的性能和管理水平。在具体实施时,标准的制定和应用将需要综合考虑不同制造商的技术和产品特性,以及与现有系统的兼容性问题。
2025-11-02 14:40:38 949KB 电力系统
1
MIDI 1.0(电子规范和协议) General MIDI 1(包括 GM 开发者指南) 标准 MIDI 文件 MIDI 显示控制 MIDI 机器控制 MIDI 时间码 在网站上还有所有自 1996 年以来增加的 MIDI 规范,并包括最近增加的针对 MIDI 数据经过 Bluetooth Low Energy (BLE / 蓝牙低功耗) 传输的规范。还包含有一个参考表,可以快速而轻松的查询特定的 MIDI 信息号,找到厂商 ID 号,以及更多的国际 MIDI 标准。
2025-11-01 14:40:26 3.71MB MIDI规范
1
本书采用规范说明和描述语言SDL(Specification and Description Language)记号来描述状态和状态间的转换。这种方法经常使用在通信协议和智能卡领域,以描述面向状态的机制,SDL意即规范说明和描述语言,并在CCrIT建议Z.100中有详细的说明。   SDI-记号和那些用于标准流程图中的符号相似。但其描述的不是程序的流程而是从状态到状态的转换。SDI,框图是用相互间由线条连接的标准化的各个符号构成的,其流程总是从左上方到右下方,所连接各个符号的线不需要用箭头来标识其起点和终点①   从简单的图形看来,这种记号被认为是对具有某些过程的系统的描述。而每一过程则是 智能卡技术领域中,规范说明和描述语言SDL(Specification and Description Language)是一种重要的工具,用于详细阐述系统状态和状态间的转换。SDL作为一种形式化的建模语言,尤其适用于描述通信协议和智能卡系统中的状态机行为。它在CCITT(现为ITU-T)的建议Z.100中被详细定义,提供了标准化的方式来描述复杂系统的行为。 SDL记号系统,即SDI(Specification and Description Diagram),其符号设计与传统的流程图类似,但重点在于描绘状态之间的转换,而非程序执行的顺序。SDI框图通过线条连接的标准化符号展示流程,通常从左上角向右下角展开,线条的起点和终点无需用箭头标示。这种记号方法能够直观地展示系统如何根据外部输入或内部事件在不同状态间转换。 1. **开始符号**(1):代表一个过程的起始点,大多数SDI框图以此为开头,表明了一个新流程的开始。 2. **作业符号**(2):用于表示一个特定的操作,其内部的文字描述了该操作的具体内容,替代了额外的辅助程序说明。 3. **决策符号**(3):允许在状态转换中进行条件判断,通常有“是”和“否”两种分支,根据条件的结果引导流程走向不同的状态。 4. **链接符号**(4):用于连接到其他SDL框图,有助于将大型的流程图分解为多个更小、更易于管理的部分。 5. **输入符号**(5)和**输出符号**(6):表示与外部环境的交互,清晰地定义了系统的输入和输出参数。 6. **状态符号**(7):用于标记系统在某一时刻所处的状态,是理解状态机动态的关键元素。 这些符号的组合使用,能够构建出一套完整的智能卡系统模型,清楚地展现出系统如何响应不同输入和事件,以及如何在各种状态间切换。通过这样的建模,设计者和开发者能够更好地理解和分析系统的行为,从而优化设计,提高智能卡的安全性和效率。 例如,在智能卡应用中,当卡片接收到读卡器的命令时,可能会经历一个从接收命令(输入符号)到解析命令(作业符号)、执行操作(可能涉及决策符号)再到返回响应(输出符号)的过程。在这一过程中,卡片的状态可能从等待状态转变为处理状态,然后再回到等待新的命令状态(状态符号)。 在实际应用中,SDL不仅帮助设计者捕捉系统的动态行为,还支持进行错误检测、性能评估和协议一致性测试。通过SDL描述的状态机模型,可以生成自动化的测试用例,确保系统在各种情况下的正确性。 智能卡记号的规范说明和描述是智能卡技术领域中不可或缺的一部分,它提供了一种强大的工具,使我们能够系统化地理解和设计智能卡系统的复杂行为。通过SDL的使用,我们可以更有效地开发、验证和维护智能卡应用,保证其在安全性、可靠性和性能上的高标准。
2025-10-30 12:54:41 75KB
1