Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-08-31 18:21:20 5.04MB matlab
1
CSDN海神之光上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:VoiceRecognition.m; Fig:GUI操作界面; 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到 Matlab的当前文件夹中; 步骤二:双击打开VoiceRecognition.m文件;(若有其他m文件,无需运行) 步骤三:点击运行,等程序运行完得到结果; 4、语音处理系列仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 语音处理系列程序定制或科研合作方向:语音隐藏、语音压缩、语音识别、语音去噪、语音评价、语音加密、语音合成、语音分析、语音分离、语音处理、语音编码、音乐检索、特征提取、声源定位、情感识别、语音采集播放变速等; CSDN海神之光上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函
2024-08-31 17:57:04 316KB matlab
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-08-28 16:48:18 3.46MB matlab
1
【优化布局】粒子群算法求解带出入点的车间布局优化问题是一个重要的工业工程与运筹学议题。在现代制造业中,高效的车间布局对于提高生产效率、降低物流成本以及优化工作环境具有重大意义。粒子群算法(Particle Swarm Optimization, PSO)是一种借鉴自然界中鸟群飞行行为的全局优化算法,它在解决复杂优化问题时表现出优秀的性能。 车间布局优化的目标通常是在满足特定约束条件下,如设备尺寸、工艺流程顺序、安全距离等,寻找最优的设备位置排列,以最小化物料搬运成本或最大化生产效率。带出入点的车间布局问题更进一步考虑了物料的进出路径,确保物料流的顺畅和高效。 粒子群算法的核心思想是通过模拟鸟群中个体间的相互作用来搜索解空间。每个粒子代表一个可能的解决方案,其位置和速度会随着迭代过程动态调整。算法中包含两个关键参数:惯性权重(Inertia Weight)和学习因子(Learning Factors)。惯性权重控制粒子维持当前运动趋势的程度,而学习因子则影响粒子跟随自身经验和全局最佳经验的趋向。 在本案例中,【优化布局】基于matlab粒子群算法求解带出入点的车间布局优化问题【含Matlab源码 011期】.mp4文件可能包含了详细的视频教程,讲解如何利用MATLAB编程实现PSO算法解决这一问题。MATLAB作为一款强大的数值计算和数据可视化工具,非常适合进行优化算法的实现和调试。 MATLAB代码可能会定义粒子群的初始化,包括粒子数量、粒子的位置和速度,以及搜索空间的边界。接着,将设定适应度函数,该函数根据布局方案的优劣评价每个粒子的解。在每次迭代过程中,粒子会更新其速度和位置,同时更新局部最优解和全局最优解。 在迭代过程中,粒子会根据自身历史最优位置(个人最佳,pBest)和群体历史最优位置(全局最佳,gBest)调整其运动方向。通过平衡探索与开发,PSO算法能够有效地避免早熟收敛,从而找到更优的布局方案。 当达到预设的迭代次数或满足其他停止条件时,算法结束,返回全局最优解,即最佳的车间布局方案。此视频教程可能还会涉及如何分析和解释结果,以及如何调整算法参数以获得更好的性能。 利用粒子群算法求解带出入点的车间布局优化问题,是将先进的计算方法应用于实际工业问题的典型示例。通过学习和理解这个案例,不仅可以掌握PSO算法的原理和应用,还能加深对车间布局优化问题的理解,为实际生产中的决策提供科学依据。
2024-08-23 21:27:06 3.99MB
1
优惠券功能第一期需求文档V1.3知识点总结 一、需求概述 优惠券功能第一期需求文档V1.3的主要目的是为了详细描述优惠券功能的需求,包括优惠券的创建、发布、使用和统计等方面的需求。通过该文档,我们可以了解优惠券功能的整体架构和各个模块之间的关系。 二、需求目的及背景 优惠券功能的需求产生是基于电子商务平台的发展需求,旨在提高用户体验和商家销售额。优惠券功能可以为用户提供更多的优惠和奖励,提高用户的购买意愿和满意度。 三、思维导图分解 思维导图是一种常用的需求分析工具,通过思维导图,我们可以将复杂的需求分解成更小、更易管理的部分。优惠券功能的思维导图分解包括优惠券创建、优惠券发布、优惠券使用和优惠券统计等几个方面。 四、系统模块列表图 系统模块列表图是指将优惠券功能分解成各个模块的列表,包括优惠券后台系统、优惠券前台系统等几个模块。通过系统模块列表图,我们可以了解优惠券功能的整体架构和各个模块之间的关系。 五、优惠券后台系统 优惠券后台系统是指优惠券功能的管理和维护部分,包括优惠券创建、优惠券发布、优惠券使用统计等几个方面。优惠券后台系统的主要功能是为商家提供优惠券的管理和维护平台。 六、优惠券后台模块分布 优惠券后台模块分布是指优惠券后台系统的各个模块的分布,包括优惠券创建模块、优惠券发布模块、优惠券使用统计模块等几个模块。通过优惠券后台模块分布,我们可以了解优惠券后台系统的整体架构和各个模块之间的关系。 七、优惠券创建流程概述 优惠券创建流程概述是指优惠券的创建过程,包括优惠券信息的输入、优惠券的审核和优惠券的发布等几个方面。优惠券创建流程概述可以帮助我们了解优惠券的创建过程和优惠券的生命周期。 八、优惠券列表 优惠券列表是指优惠券的列表显示,包括优惠券的基本信息、优惠券的状态和优惠券的操作等几个方面。优惠券列表可以帮助商家和用户快速了解优惠券的信息和状态。 九、优惠券生成及发布 优惠券生成及发布是指优惠券的生成和发布过程,包括优惠券的创建、优惠券的审核和优惠券的发布等几个方面。优惠券生成及发布可以帮助商家和用户快速了解优惠券的信息和状态。 十、优惠券使用统计 优惠券使用统计是指优惠券的使用情况统计,包括优惠券的使用次数、优惠券的使用金额和优惠券的使用率等几个方面。优惠券使用统计可以帮助商家和用户了解优惠券的使用情况和效果。 十一、原有后台订单列表页即详情页增加字段 原有后台订单列表页即详情页增加字段是指在原有的订单列表页和详情页中增加优惠券相关的字段,包括优惠券的基本信息、优惠券的状态和优惠券的操作等几个方面。 十二、优惠券前台需求 优惠券前台需求是指优惠券在前台系统中的需求,包括优惠券的领取、优惠券的使用和优惠券的统计等几个方面。优惠券前台需求可以帮助用户快速了解优惠券的信息和状态。 十三、优惠券前台模块分布 优惠券前台模块分布是指优惠券前台系统的各个模块的分布,包括优惠券领取模块、优惠券使用模块和优惠券统计模块等几个模块。通过优惠券前台模块分布,我们可以了解优惠券前台系统的整体架构和各个模块之间的关系。 十四、优惠券使用流程概述 优惠券使用流程概述是指优惠券的使用过程,包括优惠券的领取、优惠券的使用和优惠券的统计等几个方面。优惠券使用流程概述可以帮助用户快速了解优惠券的使用过程和优惠券的生命周期。 十五、优惠券领取流程 优惠券领取流程是指优惠券的领取过程,包括优惠券的选择、优惠券的领取和优惠券的使用等几个方面。优惠券领取流程可以帮助用户快速了解优惠券的领取过程和优惠券的生命周期。 优惠券功能第一期需求文档V1.3提供了详细的优惠券功能需求,包括优惠券的创建、发布、使用和统计等几个方面。通过该文档,我们可以了解优惠券功能的整体架构和各个模块之间的关系,并且可以帮助商家和用户快速了解优惠券的信息和状态。
2024-08-20 21:18:57 1.41MB
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-08-11 09:59:49 3.52MB matlab
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-08-11 09:58:48 2.78MB matlab
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-08-11 09:56:30 5.81MB matlab
1
无线传感器网络(WSN)是由大量部署在监测区域内的小型传感器节点组成,这些节点通过无线通信方式协同工作,用于环境感知、目标跟踪等任务。在实际应用中,一个关键问题是如何实现有效的网络覆盖,即确保整个监测区域被尽可能多的传感器节点覆盖,同时考虑到能量消耗和网络寿命的优化。遗传算法(Genetic Algorithm, GA)是一种启发式搜索方法,适用于解决这类复杂优化问题。 本资料主要探讨了如何利用遗传算法解决无线传感器网络的优化覆盖问题。无线传感器网络的覆盖问题可以抽象为一个二维空间中的点覆盖问题,每个传感器节点被视为一个覆盖点,目标是找到最小数量的节点,使得所有目标点都被至少一个节点覆盖。遗传算法通过模拟生物进化过程中的遗传、变异和选择等机制,寻找最优解决方案。 遗传算法的基本步骤包括: 1. 初始化种群:随机生成一定数量的个体(代表可能的解决方案),每个个体表示一种传感器节点布局。 2. 适应度函数:根据覆盖情况评估每个个体的优劣,通常使用覆盖率作为适应度值。 3. 选择操作:依据适应度值,采用轮盘赌选择或其他策略保留一部分个体。 4. 遗传操作:对保留下来的个体进行交叉(交换部分基因)和变异(随机改变部分基因),生成新一代种群。 5. 终止条件:当达到预设的迭代次数或适应度阈值时停止,此时最优个体即为问题的近似最优解。 在无线传感器网络优化覆盖问题中,遗传算法的具体实现可能涉及以下方面: - 编码方式:个体如何表示传感器节点的位置和激活状态,例如二进制编码或实数编码。 - 交叉策略:如何在两个个体之间交换信息,保持解的多样性。 - 变异策略:如何随机调整个体,引入新的解空间探索。 - 覆盖度计算:根据传感器的通信范围和目标点位置,计算当前覆盖情况。 - 能量模型:考虑传感器的能量消耗,优化网络寿命。 - 防止早熟:采取策略避免算法过早收敛到局部最优解。 提供的Matlab源码是实现这一优化过程的工具,可能包含初始化、选择、交叉、变异以及适应度计算等核心函数。通过运行源码,用户可以直观地理解遗传算法在解决无线传感器网络覆盖问题中的具体应用,并根据实际需求进行参数调整和优化。 总结来说,这个资料是关于如何利用遗传算法来解决无线传感器网络的优化覆盖问题,其中包含了Matlab源代码,可以帮助学习者深入理解算法原理并进行实践。通过分析和改进遗传算法的参数,可以有效地提高网络的覆盖性能,降低能耗,从而提升整个WSN的效率和可靠性。
2024-08-04 15:44:09 2.08MB
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-07-19 20:31:33 9.22MB matlab
1